首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human intestinal cell models are widely used to study host-enteric pathogen interactions, with different cell lines exhibiting specific characteristics and functions in the gut epithelium. In particular, the presence of mucus may play an important role in adhesion and invasion of pathogens. The aim of this study was to evaluate the suitability of the mucus-secreting HT29-MTX intestinal epithelial cell model to test adhesion and invasion of Salmonella strains and compare with data obtained with the more commonly used Caco-2 and HT-29 models. Adhesion of Salmonella to HT29-MTX cell model was significantly higher, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface, compared to the non- and low-mucus producing Caco-2 and HT-29 cell models, respectively. In addition, invasion percentages of some clinical Salmonella strains to HT29-MTX cultures were remarkably higher than to Caco-2 and HT-29 cells suggesting that these Salmonellae have subverted the mucus to enhance pathogenicity. The transepithelial electrical resistances of the infected HT29-MTX cell model decreased broadly and were highly correlated with invasion ability of the strain. Staining of S. Typhimurium-infected cell epithelium confirmed the higher invasion by Salmonella and subsequent disruption of tight junctions of HT29-MTX cell model compared with the Caco-2 and HT-29 cell models. Data from this study suggest that the HT29-MTX cell model, with more physiologically relevant characteristics with the mucus layer formation, could be better suited for studying cells–pathogens interactions.  相似文献   

3.

Background

The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known.

Methodology/Principal Findings

In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN.

Conclusions

We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.  相似文献   

4.
Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host β1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host β1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of β1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased β1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host β1 integrins.  相似文献   

5.
Ileal lesions in 36.4% of patients with Crohn's disease are colonized by pathogenic adherent-invasive Escherichia coli. The aim of this study was to determine the in vitro inhibitory effects of the probiotic strain, Lactobacillus casei DN-114 001, on adhesion to and invasion of human intestinal epithelial cells by adherent-invasive E. coli isolated from Crohn's disease patients. The experiments were performed with undifferentiated Intestine-407 cells and with undifferentiated or differentiated Caco-2 intestinal epithelial cells. Bacterial adhesion to and invasion of intestinal epithelial cells were assessed by counting CFU. The inhibitory effects of L. casei were determined after coincubation with adherent-invasive E. coli or after preincubation of intestinal cells with L. casei prior to infection with adherent-invasive E. coli. Inhibitory effects of L. casei on adherent-invasive E. coli adhesion to differentiated and undifferentiated intestinal epithelial cells reached 75% to 84% in coincubation and 43% to 62% in preincubation experiments, according to the cell lines used. Addition of L. casei culture supernatant to the incubation medium increased L. casei adhesion to intestinal epithelial cells and enhanced the inhibitory effects of L. casei. The inhibitory effects on E. coli invasion paralleled those on adhesion. This effect was not due to a bactericidal effect on adherent-invasive E. coli or to a cytotoxic effect on epithelial intestinal cells. As Lactobacillus casei DN-114 001 strongly inhibits interaction of adherent-invasive E. coli with intestinal epithelial cells, this finding suggests that the probiotic strain could be of therapeutic value in Crohn's disease.  相似文献   

6.

This study proposed to investigate the effect of azurin on the major stages of pathogenesis (adhesion and invasion) of intestinal bacterial pathogens (Salmonella spp. and Escherichia coli) and epithelial pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) on the human colorectal adenocarcinoma (Caco-2) cell line. Azurin protein was produced by cloning the azurin gene into pET21a and heterologous expression in E. coli BL21. The protein was purified using affinity chromatography and confirmed by Western blotting. The purified protein was evaluated by three experiments of adhesion and invasion assays, including exclusion, competition, and replacement. Azurin was observed to significantly inhibit the attachment and invasion of S. aureus, Salmonella spp., and E. coli, while no such inhibitory effects were observed on P. aeruginosa. In fact, the protein increased the adhesion of P. aeruginosa to the cell. In conclusion, our study proposes that azurin is a potential prophylactic or preventive helper candidate to inhibit the attachment and invasion of pathogenic bacteria to host cells and reduce the progression of the infection process. Our study also reveals the involvement of azurin in bacteria-host cell interactions, providing novel and important insights toward the elucidation of its biological function in this field. Thus, this study provides new opportunities to use azurin as an adjunct therapy against critical stages of infection by a wide range of pathogenic bacteria.

  相似文献   

7.
Poultry is known to be a major reservoir of Salmonella. The use of lactic acid bacteria has become one of successful strategies to control Salmonella in poultry. The purpose of this study was to select lactic acid bacteria strains by their in vitro immunomodulatory properties for potential use as probiotics against Salmonella infection in broiler chicks. Among 101 isolated lactic acid bacteria strains, 13 strains effectively survived under acidic (pH 2.5) and bile salt (ranging from 0.1% to 1.0%) conditions, effectively inhibited growth of 6 pathogens, and adhered to Caco-2 cells. However, their in vitro immunomodulatory activities differed significantly. Finally, three strains with higher in vitro immunomodulatory properties (Lactobacillus plantarum PZ01, Lactobacillus salivarius JM32 and Pediococcus acidilactici JH231) and three strains with lower in vitro immunomodulatory activities (Enterococcus faecium JS11, Lactobacillus salivarius JK22 and Lactobacillus salivarius JM2A1) were compared for their inhibitory effects on Salmonella adhesion and invasion to Caco-2 cells in vitro and their antimicrobial effects in vivo. The former three strains inhibited Salmonella adhesion and invasion to Caco-2 cells in vitro, reduced the number of Salmonella in intestinal content, spleen and liver, reduced the levels of lipopolysaccharide-induced TNF-α factor (LITAF), IL-1β, IL-6 and IL-12 in serum and increased the level of IL-10 in serum during a challenge study in vivo more efficiently than the latter three strains. These results suggest that in vitro immunomodulatory activities could be used as additional parameters to select more effective probiotics as feed supplements for poultry.  相似文献   

8.
Lactic Acid Bacteria (LAB) regulate and maintain the stability of healthy microbial flora, inhibit the adhesion of pathogenic bacteria and promote the colonization of beneficial micro-organisms. The drug resistance and pathogenicity of Salmonella enteritis SE47 isolated from retail eggs were investigated. Meanwhile, Enterococcus faecalis L76 and Lactobacillus salivarius LAB35 were isolated from intestine of chicken. With SE47 as indicator bacteria, the diameters of L76 and LAB35 inhibition zones were 12 mm and 8·5 mm, respectively, by agar inhibition circle method, which indicated that both of them had inhibitory effect on Salmonella, and L76 had better antibacterial effect; two chicken-derived lactic acid bacteria isolates and Salmonella SE47 were incubated with Caco-2. The adhesion index of L76 was 17·5%, which was much higher than that of LAB35 (10·21%) and SE47 (4·89%), this experiment shows that the higher the bacteriostatic effect of potential probiotics, the stronger the adhesion ability; then Caco-2 cells were incubated with different bacteria, and the survival of Caco-2 cells was observed by flow cytometry. Compared with Salmonella SE47, the results showed that lactic acid bacteria isolates could effectively protect Caco-2 cells; finally, after different bacteria incubated Caco-2 cells, according to the cytokine detection kit, the RNA of Caco-2 cells was extracted and transcribed into cDNA, then detected by fluorescence quantitative PCR, the results showed that L76 could protect Caco-2 cells from the invasion of Salmonella SE47, with less cell membrane rupture and lower expression of MIF and TNF genes. Therefore, the lactic acid bacteria isolates can effectively inhibit the adhesion of Salmonella and protect the integrity of intestinal barrier.  相似文献   

9.
10.

Invasion of Salmonella into host intestinal epithelial cells requires the expression of virulence genes. In this study, cell culture models of human intestinal cells (mucus-producing HT29-MTX cells, absorptive Caco-2 cells, and combined cocultures of the two) were used to determine the effects of Lactococcus lactis subsp. cremoris treatments (exopolysaccharide producing and nonproducing strains) on the virulence gene expression of Salmonella Typhimurium and its mutant lacking the oligopeptide permease subunit A (ΔoppA). During the course of epithelial cell (HT29-MTX, Caco-2, and combined) infection by Salmonella Typhimurium DT104, improved barrier function was reflected by increased transepithelial electrical resistance in cells treated with both strains of L. lactis subsp. cremoris. In addition, virulence gene expression was downregulated, accompanied with lower numbers of invasive bacteria into epithelial cells in the presence of L. lactis subsp. cremoris treatments. Similarly, virulence gene expression of Salmonella was also suppressed when coincubated with overnight cultures of both L. lactis subsp. cremoris strains in the absence of epithelial cells. However, in medium or in the presence of cell cultures, Salmonella lacking the OppA permease function remained virulent. HT29-MTX cells and combined cultures stimulated by Salmonella Typhimurium DT104 showed significantly lower secretion levels of pro-inflammatory cytokine IL-8 after treatment with L. lactis subsp. cremoris cell suspensions. Contrarily, these responses were not observed during infection with S. Typhimurium ΔoppA. Both the exopolysaccharide producing and nonproducing strains of L. lactis subsp. cremoris JFR1 exhibited an antivirulence effect against S. Typhimurium DT104 although no significant difference between the two strains was observed. Our results show that an intact peptide transporter is essential for the suppression of Salmonella virulence genes which leads to the protection of the barrier function in the cell culture models studied.

  相似文献   

11.
Salmonella is a facultative intracellular pathogen that has co-evolved with its host and has also developed various strategies to evade the host immune responses. Salmonella recruits an array of virulence factors to escape from host defense mechanisms. Previously chitinase A (chiA) was found to be upregulated in intracellular Salmonella. Although studies show that several structurally similar chitinases and chitin-binding proteins (CBP) of many human pathogens have a profound role in various aspects of pathogenesis, like adhesion, virulence, and immune evasion, the role of chitinase in the intravacuolar pathogen Salmonella has not yet been elucidated. Therefore, we made chromosomal deletions of the chitinase encoding gene (chiA) to study the role of chitinase of Salmonella enterica in the pathogenesis of the serovars, Typhimurium, and Typhi using in vitro cell culture model and two different in vivo hosts. Our data indicate that ChiA removes the terminal sialic acid moiety from the host cell surface, and facilitates the invasion of the pathogen into the epithelial cells. Interestingly we found that the mutant bacteria also quit the Salmonella-containing vacuole and hyper-proliferate in the cytoplasm of the epithelial cells. Further, we found that ChiA aids in reactive nitrogen species (RNS) and reactive oxygen species (ROS) production in the phagocytes, leading to MHCII downregulation followed by suppression of antigen presentation and antibacterial responses. Notably, in the murine host, the mutant shows compromised virulence, leading to immune activation and pathogen clearance. In continuation of the study in C. elegans, Salmonella Typhi ChiA was found to facilitate bacterial attachment to the intestinal epithelium, intestinal colonization, and persistence by downregulating antimicrobial peptides. This study provides new insights on chitinase as an important and novel virulence determinant that helps in immune evasion and increased pathogenesis of Salmonella.  相似文献   

12.
Few data exist on the interaction of Campylobacter upsaliensis with host cells, and the potential for this emerging enteropathogen to invade epithelial cells has not been explored. We have characterized the ability of C. upsaliensis to invade both cultured epithelial cell lines and primary human small intestinal cells. Epithelial cell lines of intestinal origin appeared to be more susceptible to invasion than non-intestinal-derived cells. Of three bacterial isolates studied, a human clinical isolate, CU1887, entered cells most efficiently. Although there was a trend towards more efficient invasion of Caco-2 cells by C. upsaliensis CU1887 at lower initial inocula, actual numbers of intracellular organisms increased with increasing multiplicity of infection and with prolonged incubation period. Confocal microscopy revealed C. upsaliensis within primary human small intestinal cells. Both Caco-2 and primary cells in non-confluent areas of the infected monolayers were substantially more susceptible to infection than confluent cells. The specific cytoskeletal inhibitors cytochalasin B, cytochalasin D and vinblastine attenuated invasion of Caco-2 cells in a concentration-dependent manner, providing evidence for both microtubule- and microfilament-dependent uptake of C. upsaliensis. Electron microscopy revealed the presence of organisms within Caco-2 cell cytoplasmic vacuoles. C. upsaliensis is capable of invading epithelial cells and appears to interact with host cell cytoskeletal structures in order to gain entry to the intracellular environment. Entry into cultured primary intestinal cells ex vivo provides strong support for the role of host cell invasion during human enteric C. upsaliensis infection.  相似文献   

13.
Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.  相似文献   

14.

Background and Aims

Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium.

Methodology

By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium.

Results

A significant higher expression of IL-12 and TNFα and a clear potentiation of the expression of IL-1β, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 µg/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 µg/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON.

Conclusion

These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut.  相似文献   

15.

Background  

Salmonella enterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied.  相似文献   

16.
We report our investigation of the functions of PagN in Salmonella pathogenesis and its potential as a vaccine candidate. Further investigation conducted in this study indicates that the outer membrane protein PagN is important for Salmonella adhesion/invasion of epithelial cells as well as bacterial virulence. When pagN was deleted from Salmonella enterica serovar Typhimurium (S. Typhimurium), the adhesion and invasion of HT-29 epithelial cells was significantly decreased compared with the wild type strain. Mice infected with the pagN mutant strain exhibited less pathological signs in the intestine and survived longer than the wild-type-infected mice. PagN is widely distributed and conserved among clinical isolates of different Salmonella serovars, making PagN a potential vaccine candidate for Salmonella infection. To elucidate the potential of PagN as a vaccine, we expressed and purified recombinant PagN (rPagN). When rPagN was tested in mice, it provided significant protection against Salmonella infection in vivo. In vitro, anti-PagN serum enhanced clearance of Salmonella, indicating a contribution of PagN-specific antibodies to the killing process. This correlates well with the observed protection of mice immunized with rPagN. Our preliminary results indicate more functions of PagN in S. Typhimurium virulence as well as its potential as a protective vaccine.  相似文献   

17.
18.

Background

Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection.

Methodology/Principal Findings

The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (LbpLAP) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to LbpLAP for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, LbpLAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. LbpLAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, LbpLAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h.

Conclusions/Significance

Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, LbpLAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations.  相似文献   

19.

Background

Circulating lipoproteins improve the outcome of severe Gram-negative infections through neutralizing lipopolysaccharides (LPS), thus inhibiting the release of proinflammatory cytokines.

Methods/Principal Findings

Low density lipoprotein receptor deficient (LDLR−/−) mice, with a 7-fold increase in LDL, are resistant against infection with Salmonella typhimurium (survival 100% vs 5%, p<0.001), and 100 to 1000-fold lower bacterial burden in the organs, compared with LDLR+/+ mice. Protection was not due to differences in cytokine production, phagocytosis, and killing of Salmonella organisms. The differences were caused by the excess of lipoproteins, as hyperlipoproteinemic ApoE−/− mice were also highly resistant to Salmonella infection. Lipoproteins protect against infection by interfering with the binding of Salmonella to host cells, and preventing organ invasion. This leads to an altered biodistribution of the microorganisms during the first hours of infection: after intravenous injection of Salmonella into LDLR+/+ mice, the bacteria invaded the liver and spleen within 30 minutes of infection. In contrast, in LDLR−/− mice, Salmonella remained constrained to the circulation from where they were efficiently cleared, with decreased organ invasion.

Conclusions

plasma lipoproteins are a potent host defense mechanism against invasive Salmonella infection, by blocking adhesion of Salmonella to the host cells and subsequent tissue invasion.  相似文献   

20.
【背景】弯曲菌(Campylobacter)是重要的人畜共患病原菌,可在多种动物肠道定殖,但不同宿主源弯曲菌对肠上皮细胞的黏附侵袭特征及在鸡肠道内的定殖能力并不明确。【目的】探究不同宿主源弯曲菌对不同宿主肠上皮细胞黏附侵袭及在鸡肠道内定殖能力的差异性。【方法】利用 5株来自不同宿主源弯曲菌,包括人源、鸡源、鸭源和牛源空肠弯曲菌(Campylobacter jejuni)及猪源结肠弯曲菌(Campylobacter coli),在对菌株PCR鉴定、运动力及生物膜形成能力测定的基础上,分别测定各菌株对人源肠上皮细胞Caco-2、猪源肠上皮细胞IPEC-J2和大鼠源肠上皮细胞IEC-6的黏附能力,通过庆大霉素保护试验测定菌株对肠上皮细胞的侵袭能力,比较黏附量和侵袭量的差异;将5株弯曲菌分别口服攻毒鸡,于攻毒后不同日龄(different days post inoculation,DPI)采集肠道样品测定弯曲菌的菌落数,比较不同弯曲菌在鸡肠道内定殖的差异。【结果】人源弯曲菌运动力显著高于其他4株动物源弯曲菌,而牛源和猪源弯曲菌生物膜形成能力显著高于其他菌株。黏附侵袭测定结果显示,人源弯曲菌对Caco-2细胞的黏附能力显著高于动物源弯曲菌,但侵袭能力显著低于动物源弯曲菌;鸭源和牛源弯曲菌对IPEC-J2细胞的黏附能力显著低于其他菌株,而且鸭源弯曲菌的侵袭能力显著低于其他菌株;不同菌株对IEC-6细胞的黏附能力无显著差异,但鸡源弯曲菌侵袭能力显著低于其他菌株。不同弯曲菌口服攻毒鸡后1、3和6d动物源弯曲菌定殖水平显著高于人源,在攻毒后10d和15d仅牛源弯曲菌显著高于人源,于攻毒后15d所有菌株达到约8-10Log10(CFU/g)的稳定定殖水平。【结论】来源于不同宿主的弯曲菌对不同宿主肠上皮细胞均具有黏附侵袭能力,同时可在鸡肠道内稳定定殖,提示弯曲菌在不同动物间传播和适应性定殖的特征,对开展弯曲菌针对性防控措施具有一定的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号