首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To detect genes with CpG sites that display methylation patterns that are characteristic of acute lymphoblastic leukemia (ALL) cells, we compared the methylation patterns of cells taken at diagnosis from 20 patients with pediatric ALL to the methylation patterns in mononuclear cells from bone marrow of the same patients during remission and in non-leukemic control cells from bone marrow or blood. Using a custom-designed assay, we measured the methylation levels of 1,320 CpG sites in regulatory regions of 413 genes that were analyzed because they display allele-specific gene expression (ASE) in ALL cells. The rationale for our selection of CpG sites was that ASE could be the result of allele-specific methylation in the promoter regions of the genes. We found that the ALL cells had methylation profiles that allowed distinction between ALL cells and control cells. Using stringent criteria for calling differential methylation, we identified 28 CpG sites in 24 genes with recurrent differences in their methylation levels between ALL cells and control cells. Twenty of the differentially methylated genes were hypermethylated in the ALL cells, and as many as nine of them (AMICA1, CPNE7, CR1, DBC1, EYA4, LGALS8, RYR3, UQCRFS1, WDR35) have functions in cell signaling and/or apoptosis. The methylation levels of a subset of the genes were consistent with an inverse relationship with the mRNA expression levels in a large number of ALL cells from published data sets, supporting a potential biological effect of the methylation signatures and their application for diagnostic purposes.  相似文献   

2.

Background

Acute lymphoblastic leukemia (ALL) is a common form of cancer in children. Currently, bone marrow biopsy is used for diagnosis. Noninvasive biomarkers for the early diagnosis of pediatric ALL are urgently needed. The aim of this study was to discover potential protein biomarkers for pediatric ALL.

Methods

Ninety-four pediatric ALL patients and 84 controls were randomly divided into a "training" set (45 ALL patients, 34 healthy controls) and a test set (49 ALL patients, 30 healthy controls and 30 pediatric acute myeloid leukemia (AML) patients). Serum proteomic profiles were measured using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy (SELDI-TOF-MS). A classification model was established by Biomarker Pattern Software (BPS). Candidate protein biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays.

Results

A total of 7 protein peaks (9290 m/z, 7769 m/z, 15110 m/z, 7564 m/z, 4469 m/z, 8937 m/z, 8137 m/z) were found with differential expression levels in the sera of pediatric ALL patients and controls using SELDI-TOF-MS and then analyzed by BPS to construct a classification model in the "training" set. The sensitivity and specificity of the model were found to be 91.8%, and 90.0%, respectively, in the test set. Two candidate protein peaks (7769 and 9290 m/z) were found to be down-regulated in ALL patients, where these were identified as platelet factor 4 (PF4) and pro-platelet basic protein precursor (PBP). Two other candidate protein peaks (8137 and 8937 m/z) were found up-regulated in the sera of ALL patients, and these were identified as fragments of the complement component 3a (C3a).

Conclusion

Platelet factor (PF4), connective tissue activating peptide III (CTAP-III) and two fragments of C3a may be potential protein biomarkers of pediatric ALL and used to distinguish pediatric ALL patients from healthy controls and pediatric AML patients. Further studies with additional populations or using pre-diagnostic sera are needed to confirm the importance of these findings as diagnostic markers of pediatric ALL.  相似文献   

3.

Background

Recent reports have indicated that microRNAs (miRNAs) play a critical role in malignancies, and regulations in the progress of adult leukemia. The role of miRNAs in pediatric leukemia still needs to be established. The purpose of this study was to investigate the aberrantly expressed miRNAs in pediatric acute leukemia and demonstrate miRNA patterns that are pediatric-specific and prognostic parameter-associated.

Methodology/Principal Findings

A total of 111 pediatric bone marrow samples, including 99 patients and 12 normal donors, were enrolled in this study. Of those samples, 36 patients and 7 normal samples were used as a test cohort for the evaluation of miRNA profiling; 63 pediatric patients and 5 normal donors were used as a validation cohort to confirm the miRNA differential expression. Pediatric ALL- and AML-specific microRNA expression patterns were identified in this study. The most highly expressed miRNAs in pediatric ALL were miR-34a, miR-128a, miR-128b, and miR-146a, while the highly expressed miRNAs in pediatric AML were miR-100, miR-125b, miR-335, miR-146a, and miR-99a, which are significantly different from those reported for adult CLL and AML. miR-125b and miR-126 may serve as favorable prognosticators for M3 and M2 patients, respectively. Importantly, we identified a “miRNA cascade” associated with central nervous system (CNS) relapse in ALL. Additionally, miRNA patterns associated with prednisone response, specific risk group, and relapse of ALL were also identified.

Conclusions/Significance

There are existing pediatric-associated and prognostic parameter-associated miRNAs that are independent of cell lineage and could provide therapeutic direction for individual risk-adapted therapy for pediatric leukemia patients.  相似文献   

4.
MicroRNAs are key modulators at molecular level in different biological processes, including determination of cell fate and differentiation. Herein, microRNA expression profiling experiments were performed on syngeneic cardiac (CStC) and bone marrow (BMStC) mesenchymal stromal cells cultured in standard growth medium and then in vitro exposed to adipogenic, osteogenic, cardiomyogenic and endothelial differentiation media. Analysis identified a tissue-specific microRNA signature composed of 16 microRNAs that univocally discriminated cell type of origin and that were completely unaffected by in vitro differentiation media: 4 microRNAs were over-expressed in cardiac stromal cells, and 12 were overexpressed or present only in bone marrow stromal cells. Further, results revealed microRNA subsets specifically modulated by each differentiation medium, irrespective of the cell type of origin, and a subset of 7 microRNAs that were down-regulated by all media with respect to growth medium. Finally, we identified 16 microRNAs that were differentially modulated by the media when comparing the two tissues of origin. The existence of a tissue-specific microRNA signature surviving to any differentiation stimuli, strongly support the role if microRNAs determining cell identity related to tissue origin. Moreover, we identified microRNA subsets modulated by different culture conditions in a tissue-specific manner, pointing out their importance during differentiation processes.  相似文献   

5.

Background

Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood.

Results

We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status.

Conclusions

Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment.  相似文献   

6.
Bone marrow architecture is grossly distorted at the diagnosis of ALL and details of the morphological changes that accompany response to Induction chemotherapy have not been reported before. While marrow aspirates are widely used to assess initial response to ALL therapy and provide some indications, we have enumerated marrow components using morphometric analysis of trephine samples with the aim of achieving a greater understanding of changes in bone marrow niches. Morphometric analyses were carried out in the bone marrow trephine samples of 44 children with ALL, using a NanoZoomer HT digital scanner. Diagnostic samples were compared to those of 32 control patients with solid tumors but without marrow involvement. Samples from patients with ALL had significantly increased fibrosis and the area occupied by bony trabeculae was lower than in controls. Cellularity was higher in ALL samples due to leukemic infiltration while the percentage of normal elements such as megakaryocytes, adipocytes, osteoblasts and osteoclasts were all significantly lower. During the course of Induction therapy, there was a decrease in the cellularity of ALL samples at day 15 of therapy with a further decrease at the end of Induction and an increase in the area occupied by adipocytes and the width of sinusoids. Reticulin fibrosis decreased throughout Induction. Megakaryocytes increased, osteoblasts and osteoclasts remained unchanged. No correlation was found between clinical presentation, early response to treatment and morphological changes. Our results provide a morphological background to further studies of bone marrow stroma in ALL.  相似文献   

7.
The expression pattern and regulatory functions of microRNAs (miRNAs) are intensively investigated in various tissues, cell types and disorders. Differential miRNA expression signatures have been revealed in healthy and unhealthy tissues using high-throughput profiling methods. For further analyses of miRNA signatures in biological samples, we describe here a simple and efficient method to detect multiple miRNAs simultaneously in total RNA. The size-coded ligation-mediated polymerase chain reaction (SL-PCR) method is based on size-coded DNA probe hybridization in solution, followed-by ligation, PCR amplification and gel fractionation. The new method shows quantitative and specific detection of miRNAs. We profiled miRNAs of the let-7 family in a number of organisms, tissues and cell types and the results correspond with their incidence in the genome and reported expression levels. Finally, SL-PCR detected let-7 expression changes in human embryonic stem cells as they differentiate to neuron and also in young and aged mice brain and bone marrow. We conclude that the method can efficiently reveal miRNA signatures in a range of biological samples.  相似文献   

8.
Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we performed microRNA profiling of undifferentiated and of neurally-differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 microRNAs with more than two-fold higher expression and 3–9 microRNAs with two-fold lower expression. The identified microRNAs were further analysed in terms of gene ontology (GO) in relation with neurogenesis, based on their target mRNAs predicted by computational analysis. This study revealed the specific microRNAs involved in neurogenesis via microRNA microarray, and may provide the basic information for genetic induction of adult stem cell differentiation using microRNAs.  相似文献   

9.
ABSTRACT: BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most frequently-occurring malignant neoplasm in children, but the pathogenesis of the disease remains unclear. In a microarray assay using samples from 100 children with ALL, SFRS1 was found to be up-regulated. Serine/argininerich splicing factor 1 (SRSF1, also termed SF2/ASF), encoded by the SFRS1 gene, had been shown to be a pro-oncoprotein. Our previous study indicated that SRSF1 can be methylated by protein arginine methyltransferase 1 (PRMT1) in vitro; however, the biological function of SRSF1 and PRMT1 in pediatric ALL are presently unknown. METHODS: Matched, newly diagnosed (ND), complete remission (CR) and relapse (RE) bone marrow samples from 57 patients were collected in order to evaluate the expression patterns of SRSF1 and PRMT1. The potential oncogenic mechanism of SRSF1 and PRMT1 in leukemogenesis was also investigated. RESULTS: We identified significant up-regulation of SRSF1 and PRMT1 in the ND samples. Importantly, the expression of SRSF1 and PRMT1 returned to normal levels after CR, but rebounded in the RE samples. Our observation that SRSF1 could predict disease relapse was of particular interest, although the expression patterns of SRSF1 and PRMT1 were independent of the cytogenetic subtypes. In pre-B-cell lines, both SRSF1 and PRMT1 expression could be efficiently attenuated by the clinical chemotherapy agents arabinoside cytosine (Ara-c) or vincristine (VCR). Moreover, SRSF1 and PRMT1 were associated with each other in leukemia cells in vivo. Knock-down of SRSF1 resulted in an increase in early apoptosis, which could be further induced by chemotherapeutics. CONCLUSIONS: Our results indicate that SRSF1 serves as an anti-apoptotic factor and potentially contributes to leukemogenesis in pediatric ALL patients by cooperating with PRMT1.  相似文献   

10.
11.
12.
microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.  相似文献   

13.
《Epigenetics》2013,8(6):535-541
Pre-B cell acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy and remains one of the highest causes of childhood mortality. Despite this, the mechanisms leading to disease remain poorly understood. We asked if recurrent aberrant DNA methylation plays a role in childhood ALL and have defined a genome-scale DNA methylation profile associated with the ETV6-RUNX1 subtype of pediatric ALL. Archival bone marrow smears from 19 children collected at diagnosis and remission were used to derive a disease specific DNA methylation profile. The gene signature was confirmed in an independent cohort of 86 patients. A further 163 patients were analyzed for DNA methylation of a three gene signature. We found that the DNA methylation signature at diagnosis was unique from remission. Fifteen loci were sufficient to discriminate leukemia from disease-free samples and purified CD34+ cells. DNA methylation of these loci was recurrent irrespective of cytogenetic subtype of pre-B cell ALL. We show that recurrent aberrant genomic methylation is a common feature of pre-B ALL, suggesting a shared pathway for disease development. By revealing new DNA methylation markers associated with disease, this study has identified putative targets for development of novel epigenetic-based therapies.  相似文献   

14.
15.
This study reports the establishment of a bone marrow mononuclear cell (BMMC) 3D culture model and the application of this model to define sensitivity and resistance biomarkers of acute myeloid leukaemia (AML) patient bone marrow samples in response to Cytarabine (Ara‐C) treatment. By mimicking physiological bone marrow microenvironment, the growth conditions were optimized by using frozen BMMCs derived from healthy donors. Healthy BMMCs are capable of differentiating into major hematopoietic lineages and various types of stromal cells in this platform. Cryopreserved BMMC samples from 49 AML patients were characterized for ex vivo growth and sensitivity to Ara‐C. RNA sequencing was performed for 3D and 2D cultures to determine differential gene expression patterns. Specific genetic mutations and/or gene expression signatures associated with the ability of the ex vivo expansion and response to Ara‐C were elucidated by whole‐exome and RNA sequencing. Data analysis identified unique gene expression signatures and novel genetic mutations associated with sensitivity to Ara‐C treatment of proliferating AML specimens and can be used as predictive therapeutic biomarkers to determine the optimal treatment regimens. Furthermore, these data demonstrate the translational value of this ex vivo platform which should be widely applicable to evaluate other therapies in AML.  相似文献   

16.
17.
Osteosarcoma is the most common malignant bone neoplasia affecting individuals in the second decade of life. The survival rate has not been improved during the last 25 years, in part because of the lack of specific markers. The microRNAs have been identified as important regulators of gene expression, experimental evidence suggests these molecules as key players in cancer development and progression. To identify miRNAs differentially expressed in serum from patients with osteosarcoma compared to healthy donors in Mexican population. Fifteen osteosarcoma patients and fifteen age and sex matched healthy individuals were recruited. Two pools of total RNA extracted from serum per study group were prepared and the miRNA expression profiles were analyzed through TaqMan Low Density Arrays. Validation was carried out through RT-qPCR using individual TaqMan assays for those miRNAs differentially expressed. Fifteen miRNAs were differentially expressed in osteosarcoma patients compared to healthy controls. Overexpression of miR-215-5p and miR-642a-5p was confirmed by validation through RT-qPCR. The expression analysis of miRNAs from serum in osteosarcoma patients revealed differential expression of miR-215-5p and miR-642a-5p. Both microRNAs are potential markers for osteosarcoma diagnosis.  相似文献   

18.
Studies have been carried out on the levels of serum and urine colony stimulating activity (CSA) and peripheral blood and bone marrow colony forming cell numbers in children with acute lymphocytic leukemia (ALL) during various phases of their disease. These studies have suggested that serum and urine levels of colony stimulating factor are reduced during the inital or relapse phase of the disease compared to levels found during remission. It has also been found that the number of bone marrow colony forming cells is reduced in relapse or before treatment and elevated during remission while the number of peripheral blood colony forming cells is increased during relapse or before treatment and normal during remission. It has also been shown that mixing of serum or leukemic cells with normal human bone marrow cells inhibits colony formation.  相似文献   

19.
20.
The nature of null-cell acute lymphatic leukemia (ALL) was investigated with the aid of a thymic humoral factor (THF), bone marrow cells, and a local xenogeneic graft-versus-host reaction (GVHR). Lymphocytes obtained from the blood and bone marrow of six children with T-cell ALL, five with null-cell ALL, one with perinatal B-cell ALL, one with acute myelocytic leukemia, and one with erythroleukemia were tested for membrane surface markers (E, EAC, and SM Ig); functional activity of T cells was tested by a local GVHR. All of the specimens obtained at the initial presentation showed a lack of functional activity of the lymphocytes. Incubation of null cell and acute myelocytic leukemia (AML) bone marrow with THF led to the acquisition of the characteristics of functional, immunocompetent T cells. No such effect was seen when the bone marrow of T-cell ALL and peripheral blood lymphocytes of B-cell perinatal ALL were incubated with THF. This study demonstrates that the null cell in ALL bone marrow can be differentiated into a T cell whereas the stem cell in AML bone marrow constitutes a pluripotential undifferentiated cell which also can mature into a T cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号