首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonreceptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) integrates growth and differentiation signals from receptor tyrosine kinases (RTKs) into the RAS/mitogen-activated protein kinase (MAPK) cascade. Considered ‘undruggable’ over three decades, SHP2 is now a potentially druggable target with the advent of allosteric SHP2 inhibitors. These agents hold promise for improving patient outcomes, showing efficacy in preclinical cancer models, where SHP2 is critical for either oncogenic signaling or resistance to current targeted agents. SHP2 inhibition may also produce immunomodulatory effects in certain tumor microenvironment cells to help cultivate antitumor immune responses. The first generation of allosteric SHP2 inhibitors is under clinical evaluation to determine safety, appropriate tolerability management, and antitumor efficacy, investigations that will dictate future clinical applications.  相似文献   

2.
SHP2, a non-receptor protein tyrosine phosphatase encoded by PTPN11 gene, plays an important role in the cell growth and proliferation. Activating mutations of SHP2 have been reported as a cause of various human diseases such as solid tumors, leukemia, and Noonan syndrome. The discovery of SHP2 inhibitor can be a potent candidate for the treatment of cancers and SHP2 related human diseases. Several reports on a small molecule targeting SHP2 have published, however, there are limitations on the discovery of SHP2 phosphatase inhibitors due to the polar catalytic site environment. Allosteric inhibitor can be an alternative to catalytic site inhibitors. 3,4,6-Trihydroxy-5-oxo-5H-benzo[7]annulene 1 was obtained as an initial hit with a 0.097 μM of IC50 from high-throughput screening (HTS) study. After the structure-activity relationship (SAR) study, compound 1 still showed the most potent activity against SHP2. Moreover, compound 1 exerted good potency against SHP2 expressing 2D and 3D MDA-MB-468.  相似文献   

3.
Roger S Lo 《Cell research》2012,22(6):945-947
The BRAF inhibitors (BRAFi) induce anti-tumor responses in nearly 60% of patients with advanced V600BRAF-mutant melanomas but only 5% of patients with V600BRAF-mutant colorectal carcinomas. Earlier studies of how a subset of melanoma that initially responds to BRAFi but later acquires drug resistance pointed to the importance of receptor tyrosine kinases (RTKs) in drug escape. In a pair of recent reports, this RTK-mediated mechanism of acquired BRAFi resistance in melanoma is re-surfacing in the context of innate or primary BRAFi resistance in V600BRAF-mutant colorectal carcinomas, suggesting potential upfront therapeutic strategies to prevent BRAFi resistance.V600BRAF mutations are found in >50% of melanomas, nearly 100% of hairy cell leukemias but smaller subsets of more common human malignancies (e.g., colorectal, thyroid)1. The in-human “druggability” of mutant BRAF has been best demonstrated in metastatic BRAF mutant melanomas using the novel small-molecule BRAF inhibitor (BRAFi) PLX4032/vemurafenib, producing survival benefits2. Early clinical results of BRAFi in colorectal carcinoma, however, were disappointing, with only 5% of patients (1 of 21 patients) experiencing a partial response and 19% of patients (4 of 21 patients) experiencing minor responses3. This difference in the clinical results (melanoma vs. colorectal carcinoma) may relate less to their ontological origins but more to alternative states of a dynamic and plastic survival signaling network.The majority of BRAF mutant melanomas responds to BRAFi rapidly but acquires drug resistance within a median time of 6-7 months. The specific mechanisms of acquired BRAFi resistance are variegated but fall under two core pathways: 1) reactivation of RAF-MEK-ERK MAPK signaling, and 2) activation of MAPK-redundant signaling via the receptor tyrosine kinase (RTK)-PI3K-AKT pathway, which is parallel but interconnected to the MAPK pathway. MAPK reactivation can occur via NRAS activating mutations4, COT overexpression5, V600BRAF alternative splicing6, V600BRAF amplification7, and MEK1 activating mutation8,9. MAPK-redundant signaling via RTK overexpression has been shown to result in AKT activation and RAS-CRAF-MEK signaling, bypassing mutant BRAF4,10,11. The repertoire of RTK overexpressed appears restricted but shares a common pattern of PDGFRβ and EGFR overexpression, at least in melanoma cell lines with acquired resistance to vemurafenib4. It is unclear at present how this overexpression of a select number of wild-type RTKs contributes to the molecular details of survival pathway redundancy and cooperativity. Nevertheless, understanding how melanomas acquire BRAFi resistance via core pathways may shed key insights into mechanisms of innate BRAFi resistance in multiple malignancies. Hence, it came as not a complete surprise that a pair of papers published recently implicated RTKs in innate BRAFi resistance in colorectal cancer cell lines12,13. Both studies pointed to EGFR activation and downstream signaling as a key component to innate BRAFi resistance, at least in a majority of colorectal carcinoma (CRC) cell lines examined.Corcoran et al.12 showed that BRAF mutant CRC cell lines, in contrast to BRAF mutant melanoma cell lines, displayed innate resistance to growth inhibition by vemurafenib. An important clue implicating RTK involvement in innate vemurafenib resistance of BRAF mutant CRC cell lines came from the observation that p-ERK recovery occurred soon (hours to days) after vemurafenib treatment, unlike the kinetics of p-ERK recovery in BRAF mutant melanoma cell lines. This relatively rapid recovery of p-ERK post vemurafenib treatment in CRC cell lines is akin to that in melanoma cell lines with acquired BRAFi resistance driven by RTK overexpresion10. Corcoran et al. then traced this propensity for early p-ERK recovery to vemurafenib treatment (24 h)-dependent enhancement of (activated) RAS-GTP levels and MEK activity, parallel to elevated RAS-GTP levels in melanoma cell lines with RTK-driven, acquired BRAFi resistance4. In phospho-RTK arrays, they determined that the p-EGFR level (among others such as p-c-MET and p-IGF1R levels) was elevated in CRC cell lines relative to those in melanoma cells. Vemurafenib treatment (24 h) did not significantly enhance the p-EGFR level (but did elevate the p-IGFR1 level). Elevated p-EGFR levels in BRAF mutant CRC cell lines were correlated with elevated total EGFR levels (i.e., overexpressed compared with BRAF mutant melanoma cell lines). Thus, several observations correlated with innate BRAFi resistance in CRC cell lines: RTK (mostly consistently EGFR) overexpression (at baseline); upregulation of activation-associated phosphorylation of RTKs (at baseline); and upregulation of RAS-GTP levels (in response to BRAFi treatment). Curiously, although EGFR is highly phosphorylated at baseline, the RAS-GTP levels only rose in response to vemurafenib treatment.Corcoran et al. further showed that small-molecule EGFR inhibitors (EGFRi) could downregulate, partially or completely, the RAS-GTP level induced by vemurafenib treatment. The combination of vemurafenib (BRAFi) and gefitnib (EGFRi) could synergistically reduce p-ERK levels and the net growth inhibition of most but not all CRC cell lines studied, suggesting that survival in some CRC cell lines may also depend on other RTKs and downstream signaling (e.g., AKT). Consistently, the combination of vemurafenib and erlotinib (EGFRi) stabilized the growth of, but did not cause significant regression of, CRC xenografts. Simultaneous inhibition or genetic knockdown of multiple RTKs was not explored, leaving unresolved the issue of how multiple RTKs may potentially play cooperative survival roles at baseline or in response to kinase inhibitor therapy.Prahallad et al.13 also compared CRC and melanoma cell lines and showed that EGFR expression is generally higher in CRC cell lines. Vemurafenib treatment (6 h) of the WiDr CRC cell line led to an induction in p-EGFR and p-AKT levels, concomitant with the expected suppression of p-MEK and p-ERK. MEK inhibition, by AZD6244 treatment, similarly led to the rebound phosphorylation of EGFR. Based on earlier literature showing that the ERK kinase phosphorylates Cdc25c, activating its phosphatase activity, and that Cdc25c can dephosphorylate EGFR, Prahallad et al. went on to show that Cdc25c knockdown mimicked vemurafenib treatment in inducing p-EGFR levels. As predicted, vemurafenib treatment of CRC cell line inhibited Cdc25c phosphorylation at a key threonine (Thr 48), which was previously demonstrated to be a key event for its phosphatase activity. Addition of an EGFRi (cetuximab or gefitnib) to the BRAFi vemurafenib treatment downregulated the baseline level of p-ERK and the BRAFi-induced p-AKT level (but not the baseline p-AKT level). Moreover, addition of an EGFRi sensitized CRC cell lines to growth inhibition by vemurafenib in vitro but did not induce tumor regression in vivo, again suggesting incomplete survival signaling blockade. Accordingly, it has been shown that the effect of vemurafenib in shrinking CRC tumor xenografts was enhanced by combining with an AKT inhibitor (MK-2206)14. Moreover, in this study, the addition of vemurafenib to erlotinib treatment also resulted in increased anti-tumor activity and improved survival in xenograft models. It should be pointed out that Prahallad et al. did not formally assess BRAFi and EGFRi synergy, nor did they examine the diversity of RTK overexpression/activity and its contribution to downstream survival signaling (e.g., AKT).These works, along with prior studies4,10, highlight the importance of expression and activity level of RTKs as a key sensitivity determinant of BRAFi resistance in BRAF mutant cancer cell lines (Figure 1). An important question remains as to whether the diversity of RTK overexpression and/or upregulation participates in and contributes to the full BRAFi resistance phenotype. A recent study afforded us a systems-wide view of the RTKinome reprogramming in response to MEK inhibition in the so-called triple-negative breast cancer cell lines15. The balance of the MAPK vs. RTK network signaling may be dynamically influenced by kinase inhibitors targeting RAF or MEK. This daunting diversity of RTK expression/activity may corner us into abandoning a combination of RTK inhibitors (already approved for clinical usage) with a BRAF inhibitor. Instead, we might need to resort to downstream pathway inhibitors not yet approved for clinical usage (e.g., an inhibitor of MEK with an inhibitor of the PI3K-AKT-mTORC1/2 axis) before we have a chance to corner BRAF mutant cancers into death.Open in a separate windowFigure 1Upregulation of receptor tyrosine kinase(s) (RTKs) as a key sensitivity determinant of BRAFi resistance in BRAF mutant cancer cell lines. (A) In BRAF mutant melanoma cell lines, RTKs are generally expressed at very low levels and contribute minimally to survival signaling, resulting in a strong addiction to mutant BRAF signaling and sensitivity to BRAFi. When BRAF mutant melanoma cell lines acquire BRAFi resistance, they upregulate the expression and activity of PDGFRb and other RTKs, resulting in reactivation of MEK-ERK as well as MAPK-redundant PI3K-AKT survival signaling. (B) In BRAF mutant colorectal carcinoma (CRC) cell lines, EGFR and other RTKs are upregulated by overexpression and some level of activation, resulting in MAPK-redundant survival signaling and conferring innate or primary BRAFi resistance. Treatment of CRC cell lines wth a BRAF or a MEK inhibitor can further activate EGFR and potentially other RTKs and stimulate GTP-RAS levels, consolidating innate BRAFi resistance. Red denotes mutated protein (e.g., BRAF); gray symbols denote weak signaling or interactions; multiplicity of protein symbols denotes overexpression; P in blue denotes activation-associated phosphorylation.  相似文献   

4.
Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX–LOX inhibitors in colon cancer cells.  相似文献   

5.
Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination?therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.  相似文献   

6.
Colorectal cancer (CRC) is the second most common cancer in the world and death from CRC accounts for 8% of all cancer deaths both in men and women in the United States. CRC is life-threatening disease due to therapy resistant cancerous cells. The exact mechanisms of cell growth, survival, metastasis and inter & intracellular signaling pathways involved in CRC is still a significant challenge. Hence, investigating the signaling pathways that lead to colon carcinogenesis may give insight into the therapeutic target. In this study, the role of atypical Protein Kinase C (aPKC) on CRC was investigated by using two inhibitors of that protein class: 1) ζ-Stat (8-hydroxynaphthalene-1,3,6-trisulfonic acid) is a specific inhibitor of PKC-ζ and 2) ICA-I 5-amino-1-(2,3-dihydroxy-4-hydroxymethyl)cyclopentyl)-1H-imidazole-4-carboxamide) is a specific inhibitor of PKC-ι. The cell lines tested were CCD18CO normal colon epithelial and LOVO metastatic CRC cells. The inhibition of aPKCs did not bring any significant toxicity on CCD18CO normal colon cell line. Although PKC-ι is an oncogene in many cancers, we found the overexpression of PKC-ζ and its direct association with Rac1. Our findings suggest that the PKC-ζ may be responsible for the abnormal growth, proliferation, and migration of metastatic LOVO colon cancer cells via PKC-ζ/Rac1/Pak1/β-Catenin pathway. These results suggest the possibility of utilizing PKC-ζ inhibitor to block CRC cells growth, proliferation, and metastasis.  相似文献   

7.
8.
Objective: The treatment and prognosis of patients with advanced colorectal cancer (CRC) remain a difficult problem. Herein, we investigated the role of DEAD (Asp-Glu-Ala-Asp) box helicase 3 (DDX3) in CRC and proposed potential therapeutic targets for advanced CRC.Methods: The expression of DDX3 in CRC and its effect on prognosis were explored by databases and CRC tissue microarrays. Stable DDX3 knockdown and overexpression cell lines were established with lentiviral vectors. The effects of DDX3 on CRC were investigated by functional experiments in vitro and in vivo. The molecular mechanism of DDX3 in CRC was explored by western blotting. Molecular-specific inhibitors were further used to explore potential therapeutic targets for advanced CRC.Results: The expression of DDX3 was decreased in advanced CRC, and patients with low DDX3 expression had a poor prognosis. In vitro and in vivo experiments showed that low DDX3 expression promoted the proliferation, migration and invasion of CRC. DDX3 loss regulated E-cadherin and β-catenin signaling through the mitogen-activated protein kinase (MAPK) pathway as shown by western blotting. In addition, the MEK inhibitor, PD98059, significantly reduced the increased cell proliferation, migration and invasion caused by knockdown of DDX3.Conclusions: DDX3 acts as a tumor suppressor gene in CRC. DDX3 loss in advanced cancer promotes cancer progression by regulating E-cadherin and β-catenin signaling through the MAPK pathway, and targeting the MAPK pathway may be a therapeutic approach for advanced CRC.  相似文献   

9.
Constitutive activation of mitogen-activated protein kinase (MAPK) pathway is implicated in a variety of human malignancies especially those that carry Ras mutations and is currently exploited as a cancer therapeutic target. The variability of response by cancer cells to the inhibition of the Ras/MAPK pathway both in vivo and in vitro, however, suggests that the genetic background of the tumor cell may modulate the effectiveness of this directed therapeutic. In a panel of colorectal cancer cell lines that carry Ras mutations and have constitutively active MEK/MAPK, we found that inhibition of the MAPK upstream kinase MEK by the small molecular MEK inhibitor U0126 induced cell death only in p53 wild-type cells. By contrast, p53-deficient cells were not affected by blocking the MEK/MAPK pathway. Using isogenic colon cancer cell lines and RNA interference, we show that loss of p53 significantly reduces MAPK phosphorylation and renders cells resistant to U0126 treatment. These findings reveal a critical role for p53 in MAPK-driven cell survival and place p53 upstream in the control cascade of MAPK activity. The therapeutic implication of these observations is that MAPK inhibitors will be most beneficial as a therapeutic agent in p53 normal colon cancers where constitutively active MAPK resulting from a Ras mutation is required for cell survival.  相似文献   

10.
11.
The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is an oncogenic phosphatase linked to various kinds of cancers. Consequently, SHP2 has emerged as a promising target for novel anti-cancer agents. Using scaffold-hopping strategy, a series of benzo[c][1,2,5]thiadiazole derivatives was designed from PTP1B inhibitors with 1H-2,3-Dihydroperimidine motif, synthesized and evaluated their biological activities against PTP1B and SHP2. Among them, the representative compound 11g displayed SHP2 inhibitory activity with IC50 of 2.11?±?0.99?μM, exhibited 2.02-fold and 25-fold selectivity for SHP2 over SHP1 and PTP1B respectively and had no visible activity against TCPTP. These preliminary results could provide a possible opportunity for the development of novel SHP2 inhibitors with optimal potency and improved pharmacological properties.  相似文献   

12.
13.
Dysregulated Notch signaling has a critical role in the tumorigenesis. Jagged1, a Notch ligand, is overexpressed in various human cancers. Recent studies revealed the involvement of Jagged1 in colorectal cancer (CRC) development. These basic studies provide a promising potential for inhibition of the Notch pathway for the treatment of CRC. Herein, we aimed to investigate the consequences of targeting Jagged1 using shRNA on CRC both in vitro and in vivo to test their potential to inhibit this key element for CRC treatment. We found that downregulation of Jagged1 with lentiviral Jagged1-shRNA resulted in decreased colon cancer cell viability in vitro, most likely mediated through reduced cell proliferation. Importantly, Jagged1 knockdown induced G0/G1 phase cell cycle arrest, with reduced Cyclin D1, Cyclin E and c-Myc expression. Silencing of Jagged1 reduced the migration and invasive capacity of the colon cancer cells in vitro. Furthermore, colon cancer cells with knockdown of Jagged1 had much slower growth rate than control cells in a xenograft mouse model in vivo, with a marked downregulation of cell proliferation markers (PCNA, Ki-67, and c-Myc) and metastasis markers (MMP-2 and MMP-9). These findings rationalize a mechanistic approach to CRC treatment based on Jagged1-targeted therapeutic development.  相似文献   

14.
One of the recent breakthroughs in cancer research is the identification of activating mutations in various receptor tyrosine kinase(RTK) pathways in many cancers including colorectal cancer(CRC). We hypothesize that, alternative to mutations, overexpression of various oncogenic RTKs may also underpin CRC pathogenesis, and different RTK may couple with distinct downstream signaling pathways in different subtypes of human CRC. By immunohistochemistry, we show here that RTK members ErbB2, ErbB3 and c-Met were in deed differentially overexpressed in colorectal cancer patient samples leading to constitutive activation of RTK signaling pathways. Using ErbB2 specific inhibitor Lapatinib and c-Met specific inhibitor PHA-665752, we further demonstrated that this constitutive activation of RTK signaling is necessary for the survival of colorectal cancer cells. Furthermore, we show that RTK overexpression pattern dictates the use of downstream AKT and/or MAPK pathways. Our data are important additions to current oncogenic mutation models, and further explain the clinical variation in therapeutic responses of colorectal cancer. Our findings advocate for more personalized therapy tailored to individual patients based on their type of RTK expression in addition to their mutation status.  相似文献   

15.
Increased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRASQ61K), colon cancer (HCT-116; KRASG13D), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901. Comparing cell viability and ERK inhibition revealed different ERK dependencies for these cell lines. We identify several drugs, such as SCH772984 and VX-11e, which induce excessive toxicity not directly related to ERK1/2 inhibition in specific cell lines. We also show that PD0325901, LY3214996, and ulixertinib are prone to ERK1/2 reactivation over time. We distinguished two types of ERK1/2 reactivation: the first could be reversed by adding a fresh dose of inhibitors, while the second persists even after additional treatments. We also showed that cells that became resistant to the MEK1/2 inhibitor PD0325901 due to ERK1/2 reactivation remained sensitive to ERK1/2 inhibitor ulixertinib. Our data indicate that correlation of ERK inhibition with drug-induced toxicity in multiple cell lines may help to find more selective and effective ERK1/2 inhibitors.  相似文献   

16.
Objective Naturally occurring regulatory T (TR) cells suppress autoreactive T cells whereas adaptive TR cells, induced in the periphery, play an important role in chronic viral diseases and cancer. Several studies indicate that cyclooxygenase (COX) inhibitors prevent cancer development of colon adenomas and delay disease progression in patients with colorectal cancer (CRC). We have shown that adaptive TR cells express COX-2 and produce PGE2 that suppress effector T cells in a manner that is reversed by COX-inhibitors. Methods and results Here we demonstrate that CRC patients have elevated levels of PGE2 in peripheral blood, and CRC tissue samples and draining lymph nodes display increased numbers of FOXP3+ TR cells. Depletion of TR cells from PBMC enhanced anti-tumor T-cell responses to peptides from carcinoembryonic antigen. Furthermore, the COX inhibitor indomethacin and the PKA type I antagonist Rp-8-Br-cAMPS significantly improved the anti-tumor immune activity. Conclusion We suggest that adaptive TR cells contribute to an immunosuppressive microenvironment in CRC and inhibit effector T cells by a COX-2–PGE2-dependent mechanism and thereby facilitate tumor growth. Therapeutic strategies targeting TR cells and the PGE2–cAMP pathway may be interesting to pursue to enhance anti-tumor immune activity in CRC patients.  相似文献   

17.
Initially identified as an inhibitor of transforming growth factor (TGF)-β mainly owing to its ability to bind TGF-β receptor type I and abrogate TGF-β-driven signaling, Smad7 can interact with additional intracellular proteins and regulate TGF-β-independent pathways, thus having a key role in the control of neoplastic processes in various organs. Genome-wide association studies have shown that common alleles of Smad7 influence the risk of colorectal cancer (CRC), even though the contribution of Smad7 in colon carcinogenesis is not fully understood. In this study, we assessed the expression and role of Smad7 in human and mouse models of sporadic CRC. We document a significant increase of Smad7 in human CRC relative to the surrounding nontumor tissues and show that silencing of Smad7 inhibits the growth of CRC cell lines both in vitro and in vivo after transplantation into immunodeficient mice. Knockdown of Smad7 results in enhanced phosphorylation of the cyclin-dependent kinase (CDK)2, accumulation of CRC cells in S phase and enhanced cell death. Smad7-deficient CRC cells have lower levels of CDC25A, a phosphatase that dephosphorylates CDK2, and hyperphosphorylated eukaryotic initiation factor 2 (eIF2)α, a negative regulator of CDC25 protein translation. Consistently, knockdown of Smad7 associates with inactivation of eIF2α, lower CDC25A expression and diminished fraction of proliferating cells in human CRC explants, and reduces the number of intestinal tumors in Apcmin/+ mice. Altogether, these data support a role for Smad7 in sustaining colon tumorigenesis.  相似文献   

18.
19.
20.
The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号