首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Mycological Research》2006,110(8):929-935
Fusarium wilt of banana is a potentially devastating disease throughout the world. Options for control of the causal organism, Fusarium oxysporum f.sp. cubense (Foc) are limited. Suppressive soil sites have previously been identified where, despite the presence of Foc, Fusarium wilt does not develop. In order to understand some aspects of this disease suppression, endophytic Fusarium oxysporum isolates were obtained from banana roots. These isolates were genetically characterized and compared with an isolate of Fusarium oxysporum previously identified as being capable of suppressing Fusarium wilt of banana in glasshouse trials. Three additional isolates were selected for glasshouse trials to assess suppression of Fusarium wilt in two different cultivars of banana, Cavendish and Lady Finger. One isolate (BRIP 29089) was identified as a potential biocontrol organism, reducing the disease severity of Fusarium wilt in Lady Finger and Cavendish cultivars. Interestingly, one isolate (BRIP 45952) increased Fusarium wilt disease severity on Cavendish. The implications of an isolate of Fusarium oxysporum, non-pathogenic on banana, increasing disease severity and the potential role of non-pathogenic isolates of Fusarium oxysporum in disease complexes are discussed.  相似文献   

3.
Fusarium oxysporum f.sp. cubense (Foc) is the causative agent of Fusarium wilt of bananas (Musa spp.). To clarify the colonization patterns of Foc in bananas, two green fluorescent protein‐tagged isolates, NT320 (race 1) and B2‐gfp (race 4), were used to follow infection of the banana varieties Pisang Awak and Brazil. Penetration and colonization of both isolates in roots of these two banana varieties were observed within 6 days, but sporulation in xylem vessels was not observed until day 30 postinoculation. Interestingly, B2‐gfp penetrated into xylem vessels of Pisang Awak banana roots more quickly than NT320, implying that the race 4 isolate is more virulent than the race 1 isolate. This result was further confirmed by comparing the disease severity of plants inoculated with NT320 with that of plants inoculated with B2‐gfp. Quantitative real‐time PCR revealed that some pathogenicity‐associated genes, including Fga1, Fhk1, Fow2 and Ste12, were upregulated by B2‐gfp during exposure to Brazil bananas, while they were either downregulated by NT320 or not significantly changed. These data might partly explain why the race 4 isolate was more virulent than the race 1 isolate.  相似文献   

4.
海南省香蕉枯萎病病原菌的鉴定   总被引:2,自引:0,他引:2  
香蕉枯萎病在海南省为首次报道。在Komada改良培养基鉴定的基础上,用温室人工接种法对采自海南省各市县香蕉种植区的18个香蕉和粉蕉假茎分离物进行鉴定。结果表明香蕉枯萎病菌的两种分离物在培养特性和致病性上存在明显区别,分离自粉蕉的12个菌株为1号生理小种,而分离自香蕉的6个菌株为4号生理小种。  相似文献   

5.
Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.  相似文献   

6.
7.

During years 2001, 2002 and 2003 the gravity of the Fusarium wilt in 1000 hectares of melon culture was evaluated in Colima (Mexico). In spite of the soil disinfections with methyl bromide, the losses could reach 25% of the final production. The analysis of 4 soil samples from the fields with ill plants, in a selective medium for Fusarium, allowed to detect the presence of F. oxysporum. By means of the presented technique “soil phytopathometry”, 31 isolates of F. oxysporum f. sp. melonis were obtained from the soil samples. The isolates were inoculated on melon plants to evaluate their pathogenicity. The 31 isolates inoculated, produced the symptoms of chlorosis and wilting, in melon cultivars that allowed us to affirm that all isolates were race 1 of F. oxysporum f. sp. melonis. Being this the first news of the presence of F. oxysporum f. sp. melonis in the state of Colima (Mexico).  相似文献   

8.
Fusarium oxysporum f. sp. ciceri, the causal agent of chickpea wilt, is an important fungal pathogen in India. Thirteen oligonucleotide probes complementary to microsatellite loci, in combination with 11 restriction enzymes, were used to assess the potential of such markers to study genetic variability in four Indian races of the pathogen. Hybridisation patterns, which were dependent upon both the restriction enzyme and oligonucleotide probe used, revealed the presence of different repeat motifs in the F. oxysporum f. sp. ciceri genome. Among the restriction enzymes used, hexa-cutting enzymes were more informative than tetra- and penta-cutting enzymes, whereas tetranucleotide and trinucleotide repeats yielded better hybridisation patterns than dinucleotide repeats. Dependent upon the levels of polymorphism detected, we have identified (AGT)5, (ATC)5 and (GATA)4 as the best fingerprinting probes for the F. oxysporum f. sp. ciceri races. The distribution of microsatellite repeats in the genome revealed races 1 and 4 to be closely related at a similarity index value of 76.6%, as compared to race 2 at a similarity value of 67.3%; race 3 was very distinct at a similarity value of 26.7%. Our study demonstrates the potential of oligonucleotide probes for fingerprinting and studying variability in the F. oxysporum f. sp. ciceri races and represents a step towards the identification of potential race diagnostic markers. Received: 12 March 2000 / Accepted: 14 April 2000  相似文献   

9.
10.
11.
Secreted RNase proteins have been reported from only a few pathogens, and relatively little is known about their biological functions. Fusarium oxysporum is a soilborne fungal pathogen that causes Fusarium wilt, one of the most important diseases on tomato. During the infection of F. oxysporum, some proteins are secreted that modulate host plant immunity and promote pathogen invasion. In this study, we identify an RNase, FoRnt2, from the F. oxysporum secretome that belongs to the ribonuclease T2 family. FoRnt2 possesses an N-terminal signal peptide and can be secreted from F. oxysporum. FoRnt2 exhibited ribonuclease activity and was able to degrade the host plant total RNA in vitro dependent on the active site residues H80 and H142. Deletion of the FoRnt2 gene reduced fungal virulence but had no obvious effect on mycelial growth and conidial production. The expression of FoRnt2 in tomato significantly enhanced plant susceptibility to pathogens. These data indicate that FoRnt2 is an important contributor to the virulence of F. oxysporum, possibly through the degradation of plant RNA.  相似文献   

12.
生物肥与甲壳素和恶霉灵配施对香蕉枯萎病的防治效果   总被引:7,自引:0,他引:7  
通过盆栽试验研究了生物肥与甲壳素和恶霉灵配施防治香蕉枯萎病效果,试验结果表明,生物肥与恶霉灵配施(H+F)处理香蕉枯萎病病情指数最高,生物肥与甲壳素配施(C+F)处理病情指数最低。单独生物肥处理防病效果为32.8%,生物肥与甲壳素配施处理为42.5%,而生物肥与恶霉灵配施加重了香蕉枯萎病病情。Biolog Eco微平板研究发现,AWCD(平均每孔颜色变化率)和Shannon等4个多样性指数变化趋势与防病效果相反:防病效果好的处理,土壤细菌功能多样性指数反而低,经检测发现病原真菌(Fusarium oxysporum f. sp. cubense)可利用Biolog Eco微平板上碳源底物并发生颜色变化,干扰测定结果。T-RFLP分析土壤细菌DNA多样性,对照(灭菌生物肥)土壤中TRFs末端限制性片段最少,生物肥与甲壳素配施处理最多。与网上数据库比较,生物肥与甲壳素配施增加了土壤中芽胞杆菌种类,与恶霉灵配施降低了芽胞杆菌种类。分析发现,T-RFLP和Biolog的主成份分析载荷图具有较高一致性。因此,生物肥与生物农药甲壳素配施,从生态角度控制土传病害,优势互补,提高了土壤细菌多样性,改善了土壤细菌群落结构,有利于提高防病效果。  相似文献   

13.
Plant pathogens employ effectors as molecular weapons to manipulate host immunity and facilitate colonization. Fusarium oxysporum f. sp. cubense is the agent of wilt disease in banana plantlets and four races of the pathogen have been identified based on the cultivar specificity. A total of 9 SIX genes have been detected in the genome of Foc TR4 and 6 genes detected in Foc1. Among these SIX genes, SIX2 and SIX8 are only detected in Foc TR4, not identified in Foc1. Expression profiles analysis revealed that SIX genes of Foc TR4 are highly induced after inoculation to Cavendish banana plantlets. Virulence analysis of the SIX2 and SIX8 knock-out mutants showed that SIX8 is required for the virulence of Foc TR4 while SIX2 has no obvious functions. Over expression of SIX8-FLAG proteins in the SIX8 knock-out mutant partly restored the virulence. Western blot analysis suggested that SIX8 could be secreted into the extracellular space and a signal peptide resided the N-terminal polypeptide sequence. This study provides some clues for further research on mechanism of SIX8 in regulating virulence of Foc TR4.  相似文献   

14.
15.
16.
Fusarium oxysporum is a filamentous fungus that damages a wide range of plants and thus causes severe crop losses. In fungal pathogens, the genes and proteins involved in virulence are known to be controlled by environmental pH. Here, we report the influence of culture-medium pH (5, 6, 7, and 8) on the production of degradative enzymes involved in the pathogenesis of F. oxysporum URM 7401 and on the 2D-electrophoresis profile of intracellular proteins in this fungus. F. oxysporum URM 7401 was grown in acidic, neutral, and alkaline culture media in a submerged bioprocess. After 96?hr, the crude extract was processed to enzyme activity assays, while the intracellular proteins were obtained from mycelium and analyzed using 2D electrophoresis and mass spectrometry. We note that the diversity of secreted enzymes was changed quantitatively in different culture-medium pH. Also, the highest accumulated biomass and the intracellular protein profile of F. oxysporum URM 7401 indicate an increase in metabolism in neutral–alkaline conditions. The differential profiles of secreted enzymes and intracellular proteins under the evaluated conditions indicate that the global protein content in F. oxysporum URM 7401 is modulated by extracellular pH.  相似文献   

17.
BackgroundCytochrome P450 enzymes (CYPs) are monooxygenases present in every domain of life. In fungi CYPs are involved in virulence. Fusarium wilt of lettuce, caused by F. oxysporum f. sp. lactucae, is the most serious disease of lettuce. F. oxysporum f.sp. lactucae MSA35 is an antagonistic fungus. Pathogenic formae specialis of F. oxysporum possess a CYP belonging to the new family CYP505. This enzyme hydroxylates saturated fatty acids that play a role in plant defence.MethodsMolecular tools were adopted to search for cyp505 gene in MSA35 genome. cyp505 gene expression analysis in pathogenic and antagonistic Fusarium was performed. The enzyme was expressed in its recombinant form and used for catalytic reactions with fatty acids, the products of which were characterized by mass spectrometry analysis.ResultsA novel MSA35 self-sufficient CYP505 is differentially expressed in antagonistic and pathogenic F. oxysporum. Its expression is induced by the host plant lettuce in both pathogenesis and antagonism during the early phase of the interaction, while it is silenced during the late phase only in antagonistic Fusarium. Mass-spectrometry investigations proved that CYP505A1 mono-hydroxylates lauric, palmitic and stearic acids.ConclusionsThe ability of CYP505A1 to oxidize fatty acids present in the cortical cell membranes together with its differential expression in its Fusarium antagonistic form point out to the possibility that this enzyme is associated with Fusarium pathogenicity in lettuce.General significanceThe CYP505 clan is present in pathogenic fungal phyla, making CYP505A1 enzyme a putative candidate as a new target for the development of novel antifungal molecules.  相似文献   

18.
PG1, the major endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum, was secreted during growth on pectin by 10 of 12 isolates belonging to seven formae speciales, as determined with isoelectric focusing zymograms and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. A Southern analysis of genomic DNA and PCR performed with gene-specific primers revealed that the pg1 locus was highly conserved structurally in most isolates. Two PG1-deficient isolates were identified; one lacked the encoding gene, and the other carried a pg1 allele disrupted by a 3.2-kb insertion with sequence homology to hAT transposases. The virulence for muskmelon of different F. oxysporum f. sp. melonis isolates was not correlated with PG1 production in vitro. We concluded that PG1 is widely distributed in F. oxysporum and that it is not essential for pathogenicity.  相似文献   

19.
20.

Background

Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis.

Methodology/Principal Findings

Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits.

Conclusions/Signficance

The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号