首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance to thyroid hormone (RTH), a human syndrome, is characterized by high thyroid hormone (TH) and thyroid-stimulating hormone (TSH) levels. Mice with mutations in the thyroid hormone receptor beta (TRβ) gene that cannot bind steroid receptor coactivator 1 (SRC-1) and Src-1−/− mice both have phenotypes similar to that of RTH. Conversely, mice expressing a mutant nuclear corepressor 1 (Ncor1) allele that cannot interact with TRβ, termed NCoRΔID, have low TH levels and normal TSH. We hypothesized that Src-1−/− mice have RTH due to unopposed corepressor action. To test this, we crossed NCoRΔID and Src-1−/− mice to create mice deficient for coregulator action in all cell types. Remarkably, NCoRΔID/ΔID Src-1−/− mice have normal TH and TSH levels and are triiodothryonine (T3) sensitive at the level of the pituitary. Although absence of SRC-1 prevented T3 activation of key hepatic gene targets, NCoRΔID/ΔID Src-1−/− mice reacquired hepatic T3 sensitivity. Using in vivo chromatin immunoprecipitation assays (ChIP) for the related coactivator SRC-2, we found enhanced SRC-2 recruitment to TR-binding regions of genes in NCoRΔID/ΔID Src-1−/− mice, suggesting that SRC-2 is responsible for T3 sensitivity in the absence of NCoR1 and SRC-1. Thus, T3 targets require a critical balance between NCoR1 and SRC-1. Furthermore, replacement of NCoR1 with NCoRΔID corrects RTH in Src-1−/− mice through increased SRC-2 recruitment to T3 target genes.  相似文献   

2.
3.
Thyroid hormone and thyroid hormone receptor (TR) play an essential role in metabolic regulation. However, the role of TR in adipogenesis has not been established. We reported previously that TR sumoylation is essential for TR-mediated gene regulation and that mutation of either of the two sites in TRα or any of the three sites in TRβ reduces TR sumoylation. Here, we transfected TR sumoylation site mutants into human primary preadiocytes and the mouse 3T3L1 preadipocyte cell line to determine the role of TR sumoylation in adipogenesis. Reduced sumoylation of TRα or TRβ resulted in fewer and smaller lipid droplets and reduced proliferation of preadipocytes. TR sumoylation mutations, compared with wild-type TR, results in reduced C/EBP expression and reduced PPARγ2 mRNA and protein levels. TR sumoylation mutants recruited NCoR and disrupted PPARγ-mediated perilipin1 (Plin1) gene expression, associated with impaired lipid droplet formation. Expression of NCoRΔID, a mutant NCoR lacking the TR interaction domain, partially “rescued” the delayed adipogenesis and restored Plin1 gene expression and adipogenesis. TR sumoylation site mutants impaired Wnt/β-catenin signaling pathways and the proliferation of primary human preadipocytes. Expression of the TRβ K146Q sumoylation site mutant down-regulated the essential genes required for canonical Wnt signal-mediated proliferation, including Wnt ligands, Fzds, β-catenin, LEF1, and CCND1. Additionally, the TRβ K146Q mutant enhanced the canonical Wnt signaling inhibitor Dickkopf-related protein 1 (DKK1). Our data demonstrate that TR sumoylation is required for activation of the Wnt canonical signaling pathway during preadipocyte proliferation and enhances the PPARγ signaling that promotes differentiation.  相似文献   

4.
5.
6.
The serotonin 2C receptor (5-HT2CR), a Gq-protein-coupled neurotransmitter receptor, exists in multiple isoforms that result from RNA editing of five exonic adenosines that are converted to inosines. In the adult brain, editing of 5-HT2C pre-mRNA exhibits remarkable plasticity in response to environmental and neurochemical stimuli. Here, we investigated two potential mechanisms underlying these plastic changes in adult 5-HT2CR editing phenotypes in vivo: activation of phospholipase C (PLC) and alternative splicing of pre-mRNA encoding the editing enzymes ADAR1 and ADAR2. Studies on two inbred strains of mice (C57Bl/6 and Balb/c) revealed that sustained stimulation of PLC—a downstream effector of activated Gαq protein—increased editing of forebrain neocortical 5-HT2C pre-mRNA at two sites known to be targeted by ADAR2. Moreover, changes in relative expression of the alternatively spliced “a” and “b” mRNA isoforms of ADAR1 and ADAR2 also correlate with changes in 5-HT2CR editing. The site-specific changes in 5-HT2CR editing detected in mice with different “a” over “b” ADAR mRNA isoform ratios only partially overlap with those evoked by sustained PLC activation and are best explained by the increased editing efficiency of ADAR1. Thus, activation of PLC and alternative splicing of ADAR pre-mRNA have both overlapping and specific roles in modulating 5-HT2CR editing phenotypes.  相似文献   

7.
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by high levels of antibodies directed against nuclear antigens. Elevated serum CD138, a heparan sulfate–bearing proteoglycan, correlates with increased disease activity in patients with SLE, but the contribution of CD138 to lupus disease is not known. Corroborating patient data, we detected an increase in serum CD138 in MRL/MpJ-Faslpr/J (MRL/Lpr) mice (a model for SLE disease) parallel to disease activity. Although T-cell receptor β (TCRβ)+CD138+ T cells typically expand in MRL/Lpr mice as the disease progresses, surprisingly, TCRβ+CD138− cells were the primary source of circulating CD138, as the transfer of TCRβ+CD138− cells, but not TCRβ+CD138+ cells, to young MRL/Lpr mice resulted in higher serum CD138 in the recipients. We found that trypsin was able to cleave CD138 from TCRβ+CD138+ cells, and that trypsin was highly expressed in TCRβ+CD138− cells. Moreover, trypsin inhibitors, the “defined trypsin inhibitor” and leupeptin, increased CD138 expression on TCRβ+CD138− cells, suggesting a contribution of cleaved CD138 to the increase in blood CD138 levels. Furthermore, soluble CD138 was able to bind “a proliferation-inducing ligand” (APRIL) and enhance APRIL-mediated plasma cell generation and autoreactive antibody production through the phosphorylation of extracellular signal–regulated kinase in B cells. The APRIL receptor “transmembrane activator, calcium modulator, and cyclophilin ligand interactor” was involved in the enhancement of APRIL activity by CD138, as the synergistic effect of APRIL and CD138 was ablated in transmembrane activator, calcium modulator, and cyclophilin ligand interactor–deficient B cells. These findings indicate a regulatory role for soluble CD138 in B-cell differentiation and autoreactive antibody production in SLE disease.  相似文献   

8.
Since alternative splicing of pre-mRNAs is essential for generating tissue-specific diversity in proteome, elucidating its regulatory mechanism is indispensable to understand developmental process or tissue-specific functions. We have been focusing on tissue-specific regulation of mutually exclusive selection of alternative exons because this implies the typical molecular mechanism of alternative splicing regulation and also can be good examples to elicit general rule of “splice code”. So far, mutually exclusive splicing regulation has been explained by the outcome from the balance of multiple regulators that enhance or repress either of alternative exons discretely. However, this “balance” model is open to questions of how to ensure the selection of only one appropriate exon out of several candidates and how to switch them. To answer these questions, we generated an original bichromatic fluorescent splicing reporter system for mammals using fibroblast growth factor-receptor 2 (FGFR2) gene as model. By using this splicing reporter, we demonstrated that FGFR2 gene is regulated by the “switch-like” mechanism, in which key regulators modify the ordered splice-site recognition of two mutually exclusive exons, eventually ensure single exon selection and their distinct switching. Also this finding elucidated the evolutionally conserved “splice code,” in which combination of tissue-specific and broadly expressed RNA binding proteins regulate alternative splicing of specific gene in a tissue-specific manner. These findings provide the significant cue to understand how a number of spliced genes are regulated in various tissue-specific manners by a limited number of regulators, eventually to understand developmental process or tissue-specific functions.  相似文献   

9.
Over the last century, intakes of omega-6 (ω-6) fatty acids in Western diets have dramatically increased, while omega-3 (ω-3) intakes have fallen. Resulting ω-6/ω-3 intake ratios have risen to nutritionally undesirable levels, generally 10 to 15, compared to a possible optimal ratio near 2.3. We report results of the first large-scale, nationwide study of fatty acids in U.S. organic and conventional milk. Averaged over 12 months, organic milk contained 25% less ω-6 fatty acids and 62% more ω-3 fatty acids than conventional milk, yielding a 2.5-fold higher ω-6/ω-3 ratio in conventional compared to organic milk (5.77 vs. 2.28). All individual ω-3 fatty acid concentrations were higher in organic milk—α-linolenic acid (by 60%), eicosapentaenoic acid (32%), and docosapentaenoic acid (19%)—as was the concentration of conjugated linoleic acid (18%). We report mostly moderate regional and seasonal variability in milk fatty acid profiles. Hypothetical diets of adult women were modeled to assess milk fatty-acid-driven differences in overall dietary ω-6/ω-3 ratios. Diets varied according to three choices: high instead of moderate dairy consumption; organic vs. conventional dairy products; and reduced vs. typical consumption of ω-6 fatty acids. The three choices together would decrease the ω-6/ω-3 ratio among adult women by ∼80% of the total decrease needed to reach a target ratio of 2.3, with relative impact “switch to low ω-6 foods” > “switch to organic dairy products” ≈ “increase consumption of conventional dairy products.” Based on recommended servings of dairy products and seafoods, dairy products supply far more α-linolenic acid than seafoods, about one-third as much eicosapentaenoic acid, and slightly more docosapentaenoic acid, but negligible docosahexaenoic acid. We conclude that consumers have viable options to reduce average ω-6/ω-3 intake ratios, thereby reducing or eliminating probable risk factors for a wide range of developmental and chronic health problems.  相似文献   

10.
Cardiovascular events are important co-morbidities in patients with chronic inflammatory diseases like rheumatoid arthritis. Tristetraprolin (TTP) regulates pro-inflammatory processes through mRNA destabilization and therefore TTP-deficient mice (TTP−/− mice) develop a chronic inflammation resembling human rheumatoid arthritis. We used this mouse model to evaluate molecular signaling pathways contributing to the enhanced atherosclerotic risk in chronic inflammatory diseases. In the aorta of TTP−/− mice we observed elevated mRNA expression of known TTP targets like tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1α, as well as of other pro-atherosclerotic mediators, like Calgranulin A, Cathepsin S, and Osteopontin. Independent of cholesterol levels TTP−/− mice showed a significant reduction of acetylcholine-induced, nitric oxide-mediated vasorelaxation. The endothelial dysfunction in TTP−/− mice was associated with increased levels of reactive oxygen and nitrogen species (RONS), indicating an enhanced nitric oxide inactivation by RONS in the TTP−/− animals. The altered RONS generation correlates with increased expression of NADPH oxidase 2 (Nox2) resulting from enhanced Nox2 mRNA stability. Although TNF-α is believed to be a central mediator of inflammation-driven atherosclerosis, genetic inactivation of TNF-α neither improved endothelial function nor normalized Nox2 expression or RONS production in TTP−/− animals. Systemic inflammation caused by TTP deficiency leads to endothelial dysfunction. This process is independent of cholesterol and not mediated by TNF-α solely. Thus, other mediators, which need to be identified, contribute to enhanced cardiovascular risk in chronic inflammatory diseases.  相似文献   

11.
Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA (“STAR” motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3′ UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.  相似文献   

12.
13.
14.
15.
Diabetic cardiomyopathy is one of the complications of diabetes that eventually leads to heart failure and death. Aberrant activation of PKC signaling contributes to diabetic cardiomyopathy by mechanisms that are poorly understood. Previous reports indicate that PKC is implicated in alternative splicing regulation. Therefore, we wanted to test whether PKC activation in diabetic hearts induces alternative splicing abnormalities. Here, using RNA sequencing we identified a set of 22 alternative splicing events that undergo a developmental switch in splicing, and we confirmed that splicing reverts to an embryonic pattern in adult diabetic hearts. This network of genes has important functions in RNA metabolism and in developmental processes such as differentiation. Importantly, PKC isozymes α/β control alternative splicing of these genes via phosphorylation and up-regulation of the RNA-binding proteins CELF1 and Rbfox2. Using a mutant of CELF1, we show that phosphorylation of CELF1 by PKC is necessary for regulation of splicing events altered in diabetes. In summary, our studies indicate that activation of PKCα/β in diabetic hearts contributes to the genome-wide splicing changes through phosphorylation and up-regulation of CELF1/Rbfox2 proteins. These findings provide a basis for PKC-mediated cardiac pathogenesis under diabetic conditions.  相似文献   

16.
Calpains constitute a superfamily of Ca2+-dependent cysteine proteases, indispensable for various cellular processes. Among the 15 mammalian calpains, calpain 8/nCL-2 and calpain 9/nCL-4 are predominantly expressed in the gastrointestinal tract and are restricted to the gastric surface mucus (pit) cells in the stomach. Possible functions reported for calpain 8 are in vesicle trafficking between ER and Golgi, and calpain 9 are implicated in suppressing tumorigenesis. These highlight that calpains 8 and 9 are regulated differently from each other and from conventional calpains and, thus, have potentially important, specific functions in the gastrointestinal tract. However, there is no direct evidence implicating calpain 8 or 9 in human disease, and their properties and physiological functions are currently unknown. To address their physiological roles, we analyzed mice with mutations in the genes for these calpains, Capn8 and Capn9. Capn8−/− and Capn9−/− mice were fertile, and their gastric mucosae appeared normal. However, both mice were susceptible to gastric mucosal injury induced by ethanol administration. Moreover, the Capn8−/− stomach showed significant decreases in both calpains 9 and 8, and the same was true for Capn9−/−. Consistent with this finding, in the wild-type stomach, calpains 8 and 9 formed a complex we termed “G-calpain,” in which both were essential for activity. This is the first example of a “hybrid” calpain complex. To address the physiological relevance of the calpain 8 proteolytic activity, we generated calpain 8:C105S “knock-in” (Capn8CS/CS) mice, which expressed a proteolytically inactive, but structurally intact, calpain 8. Although, unlike the Capn8−/− stomach, that of the Capn8CS/CS mice expressed a stable and active calpain 9, the mice were susceptible to ethanol-induced gastric injury. These results provide the first evidence that both of the gastrointestinal-tract-specific calpains are essential for gastric mucosal defense, and they point to G-calpain as a potential target for gastropathies caused by external stresses.  相似文献   

17.
Bone remodeling is intrinsically regulated by cell signaling molecules. The Protein Kinase C (PKC) family of serine/threonine kinases is involved in multiple signaling pathways including cell proliferation, differentiation, apoptosis and osteoclast biology. However, the precise involvement of individual PKC isoforms in the regulation of osteoclast formation and bone homeostasis remains unclear. Here, we identify PKC-δ as the major PKC isoform expressed among all PKCs in osteoclasts; including classical PKCs (−α, −β and −γ), novel PKCs (−δ, −ε, −η and −θ) and atypical PKCs (−ι/λ and −ζ). Interestingly, pharmacological inhibition and genetic ablation of PKC-δ impairs osteoclastic bone resorption in vitro. Moreover, disruption of PKC-δ activity protects against LPS-induced osteolysis in mice, with osteoclasts accumulating on the bone surface failing to resorb bone. Treatment with the PKC-δ inhibitor Rottlerin, blocks LPS-induced bone resorption in mice. Consistently, PKC-δ deficient mice exhibit increased trabeculae bone containing residual cartilage matrix, indicative of an osteoclast-rich osteopetrosis phenotype. Cultured ex vivo osteoclasts derived from PKC-δ null mice exhibit decreased CTX-1 levels and MARKS phosphorylation, with enhanced formation rates. This is accompanied by elevated gene expression levels of cathepsin K and PKC −α, −γ and −ε, as well as altered signaling of pERK and pcSrc416/527 upon RANKL-induction, possibly to compensate for the defects in bone resorption. Collectively, our data indicate that PKC-δ is an intrinsic regulator of osteoclast formation and bone resorption and thus is a potential therapeutic target for pathological osteolysis.  相似文献   

18.
19.
20.
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号