共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks. 相似文献
2.
《Biophysical journal》2020,118(4):861-872
Despite the sequence homology between acid-sensing ion channels (ASICs) and epithelial sodium channel (ENaCs), these channel families display very different functional characteristics. Whereas ASICs are gated by protons and show a relatively low degree of selectivity for sodium over potassium, ENaCs are constitutively active and display a remarkably high degree of sodium selectivity. To decipher if some of the functional diversity originates from differences within the transmembrane helices (M1 and M2) of both channel families, we turned to a combination of computational and functional interrogations, using statistical coupling analysis and mutational studies on mouse ASIC1a. The coupling analysis suggests that the relative position of M1 and M2 in the upper part of the pore domain is likely to remain constant during the ASIC gating cycle, whereas they may undergo relative movements in the lower part. Interestingly, our data suggest that to account for coupled residue pairs being in close structural proximity, both domain-swapped and nondomain-swapped ASIC M2 conformations need to be considered. Such conformational flexibility is consistent with structural work, which suggested that the lower part of M2 can adopt both domain-swapped and nondomain-swapped conformations. Overall, mutations to residues in the middle and lower pore were more likely to affect gating and/or ion selectivity than those in the upper pore. Indeed, disrupting the putative interaction between a highly conserved Trp/Glu residue pair in the lower pore is detrimental to gating and selectivity, although this interaction might occur in both domain-swapped and nonswapped conformations. Finally, our results suggest that the greater number of larger, aromatic side chains in the ENaC M2 helix may contribute to the constitutive activity of these channels at a resting pH. Together, the data highlight differences in the transmembrane domains of these closely related ion channels that may help explain some of their distinct functional properties. 相似文献
3.
Fang Huang Marcelo Kemel Zago Lindy Abas Arnoud van Marion Carlos Samuel Galván-Ampudia Remko Offringa 《The Plant cell》2010,22(4):1129-1142
Polar cell-to-cell transport of auxin by plasma membrane–localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of auxin flow is controlled by reversible phosphorylation of the PIN hydrophilic loop (PINHL). Here, we identified three evolutionarily conserved TPRXS(N/S) motifs within the PIN1HL and proved that the central Ser residues were phosphorylated by the PINOID (PID) kinase. Loss-of-phosphorylation PIN1:green fluorescent protein (GFP) (Ser to Ala) induced inflorescence defects, correlating with their basal localization in the shoot apex, and induced internalization of PIN1:GFP during embryogenesis, leading to strong embryo defects. Conversely, phosphomimic PIN1:GFP (Ser to Glu) showed apical localization in the shoot apex but did not rescue pin1 inflorescence defects. Both loss-of-phosphorylation and phosphomimic PIN1:GFP proteins were insensitive to PID overexpression. The basal localization of loss-of-phosphorylation PIN1:GFP increased auxin accumulation in the root tips, partially rescuing PID overexpression-induced root collapse. Collectively, our data indicate that reversible phosphorylation of the conserved Ser residues in the PIN1HL by PID (and possibly by other AGC kinases) is required and sufficient for proper PIN1 localization and is thus essential for generating the differential auxin distribution that directs plant development. 相似文献
4.
Huiwen Wu Weibin Gong Xingzhe Yao Jinfeng Wang Sarah Perrett Yingang Feng 《The Journal of biological chemistry》2015,290(14):8694-8710
Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. 相似文献
5.
Sónia Troeira Henriques Yen-Hua Huang Miguel A. R. B. Castanho Luis A. Bagatolli Secondo Sonza Gilda Tachedjian Norelle L. Daly David J. Craik 《The Journal of biological chemistry》2012,287(40):33629-33643
Cyclotides are bioactive cyclic peptides isolated from plants that are characterized by a topologically complex structure and exceptional resistance to enzymatic or thermal degradation. With their sequence diversity, ultra-stable core structural motif, and range of bioactivities, cyclotides are regarded as a combinatorial peptide template with potential applications in drug design. The mode of action of cyclotides remains elusive, but all reported biological activities are consistent with a mechanism involving membrane interactions. In this study, a diverse set of cyclotides from the two major subfamilies, Möbius and bracelet, and an all-d mirror image form, were examined to determine their mode of action. Their lipid selectivity and membrane affinity were determined, as were their toxicities against a range of targets (red blood cells, bacteria, and HIV particles). Although they had different membrane-binding affinities, all of the tested cyclotides targeted membranes through binding to phospholipids containing phosphatidylethanolamine headgroups. Furthermore, the biological potency of the tested cyclotides broadly correlated with their ability to target and disrupt cell membranes. The finding that a broad range of cyclotides target a specific lipid suggests their categorization as a new lipid-binding protein family. Knowledge of their membrane specificity has the potential to assist in the design of novel drugs based on the cyclotide framework, perhaps allowing the targeting of peptide drugs to specific cell types. 相似文献
6.
Evelin Young Ze-Yi Zheng Angela D. Wilkins Hee-Tae Jeong Min Li Olivier Lichtarge Eric C. Chang 《Molecular and cellular biology》2014,34(3):374-385
Ras can act on the plasma membrane (PM) to mediate extracellular signaling and tumorigenesis. To identify key components controlling Ras PM localization, we performed an unbiased screen to seek Schizosaccharomyces pombe mutants with reduced PM Ras. Five mutants were found with mutations affecting the same gene, S. pombe
erf2 (sp-erf2), encoding sp-Erf2, a palmitoyltransferase, with various activities. sp-Erf2 localizes to the trans-Golgi compartment, a process which is mediated by its third transmembrane domain and the Erf4 cofactor. In fission yeast, the human ortholog zDHHC9 rescues the phenotypes of sp-erf2 null cells. In contrast, expressing zDHHC14, another sp-Erf2-like human protein, did not rescue Ras1 mislocalization in these cells. Importantly, ZDHHC9 is widely overexpressed in cancers. Overexpressing ZDHHC9 promotes, while repressing it diminishes, Ras PM localization and transformation of mammalian cells. These data strongly demonstrate that sp-Erf2/zDHHC9 palmitoylates Ras proteins in a highly selective manner in the trans-Golgi compartment to facilitate PM targeting via the trans-Golgi network, a role that is most certainly critical for Ras-driven tumorigenesis. 相似文献
7.
Xiaohong Deng Xuxu Zheng Huanming Yang José Manuel Afonso Moreira Nils Brünner Henrik Christensen 《PloS one》2014,9(9)
Overexpression of human epidermal growth factor receptor 2 (HER2) is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2) contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available. 相似文献
8.
Genetic Diversity in RNA Virus Quasispecies Is Controlled by Host-Virus Interactions 总被引:11,自引:0,他引:11
下载免费PDF全文

Many RNA viruses have genetically diverse populations known as quasispecies. Important biological characteristics may be related to the levels of diversity in the quasispecies (quasispecies cloud size), including adaptability and host range. Previous work using Tobacco mosaic virus and Cucumber mosaic virus indicated that evolutionarily related viruses have very different levels of diversity in a common host. The quasispecies cloud size for these viruses remained constant throughout serial passages. Inoculation of these viruses on a number of hosts demonstrated that quasispecies cloud size is not constant for these viruses but appears to be dependent on the host. The quasispecies cloud size remained constant as long as the viruses were maintained on a given host. Shifting the virus between hosts resulted in a change in cloud size to levels associated with the new host. Quasispecies cloud size for these viruses is related to host-virus interactions, and understanding these interactions may facilitate the prediction and prevention of emerging viral diseases. 相似文献
9.
10.
11.
12.
13.
Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis 总被引:2,自引:0,他引:2
Fabien Chardon Magali Bedu Fanny Calenge Patrick A.W. Klemens Lara Spinner Gilles Clement Giorgiana Chietera Sophie Léran Marina Ferrand Benoit Lacombe Olivier Loudet Sylvie Dinant Catherine Bellini H. Ekkehard Neuhaus Françoise Daniel-Vedele Anne Krapp 《Current biology : CB》2013,23(8):697-702
14.
Kazi Rahman Peng Zhao Msano Mandalasi Hanke van der Wel Lance Wells Ira J. Blader Christopher M. West 《The Journal of biological chemistry》2016,291(9):4268-4280
Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts. 相似文献
15.
16.
Natsuko Kinoshita Huan Wang Hiroyuki Kasahara Jun Liu Cameron MacPherson Yasunori Machida Yuji Kamiya Matthew A. Hannah Nam-Hai Chua 《The Plant cell》2012,24(9):3590-3602
The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress–induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. 相似文献
17.
18.
19.