首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tellurite containing compounds are in use for industrial processes and increasing delivery into the environment generates specific pollution that may well result in contamination and subsequent potential adverse effects on public health. It was the aim of the current study to reveal mechanism of toxicity in tellurite-sensitive and tellurite-resistant E. coli at the protein level.In this work an approach using gel-based mass spectrometrical analysis to identify a differential protein profile related to tellurite toxicity was used and the mechanism of ter operon-mediated tellurite resistance was addressed. E. coli BL21 was genetically manipulated for tellurite-resistance by the introduction of the resistance-conferring ter genes on the pLK18 plasmid. Potassium tellurite was added to cultures in order to obtain a final 3.9 micromolar concentration. Proteins from tellurite-sensitive and tellurite-resistant E. coli were run on 2-D gel electrophoresis, spots of interest were picked, in-gel digested and subsequently analysed by nano-LC-MS/MS (ion trap). In addition, Western blotting and measurement of enzymatic activity were performed to verify the expression of certain candidate proteins.Following exposure to tellurite, in contrast to tellurite-resistant bacteria, sensitive cells exhibited increased levels of antioxidant enzymes superoxide dismutases, catalase and oxidoreductase YqhD. Cysteine desulfurase, known to be related to tellurite toxicity as well as proteins involved in protein folding: GroEL, DnaK and EF-Tu were upregulated in sensitive cells. In resistant bacteria, several isoforms of four essential Ter proteins were observed and following tellurite treatment the abovementioned protein levels did not show any significant proteome changes as compared to the sensitive control.The absence of general defense mechanisms against tellurite toxicity in resistant bacteria thus provides further evidence that the four proteins of the ter operon function by a specific mode of action in the mechanism of tellurite resistance probably involving protein cascades from antioxidant and protein folding pathways.  相似文献   

2.
Potassium tellurite (K2TeO3) is extremely toxic for most forms of life and only a limited number of organisms are naturally resistant to the toxic effects of this compound. Crude extracts prepared from the environmental isolate Aeromonas caviae ST catalize the in vitro reduction of in a NADH-dependent reaction. Upon fractionation by ionic exchange column chromatography three major polypeptides identified as the E1, E2, and E3 components of the pyruvate dehydrogenase (PDH) complex were identified in fractions exhibiting tellurite-reducing activity. Tellurite reductase and pyruvate dehydrogenase activities co-eluted from a Sephadex gel filtration column. To determine which component(s) of the PDH complex has tellurite reductase activity, the A. caviae ST structural genes encoding for E1 (aceE), E2 (aceF), and E3 (lpdA) were independently cloned and expressed in Escherichia coli and their gene products purified. Results indicated that tellurite reductase activity lies almost exclusively in the E3 component, dihydrolipoamide dehydrogenase. The E3 component of the PDH complex from E. coli, Zymomonas mobilis, Streptococcus pneumoniae, and Geobacillus stearothermophilus also showed NADH-dependent tellurite reductase in vitro suggesting that this enzymatic activity is widely distributed among microorganisms.  相似文献   

3.
Preliminary studies showed that the periplasmic nitrate reductase (Nap) of Rhodobacter sphaeroides and the membrane-bound nitrate reductases of Escherichia coli are able to reduce selenate and tellurite in vitro with benzyl viologen as an electron donor. In the present study, we found that this is a general feature of denitrifiers. Both the periplasmic and membrane-bound nitrate reductases of Ralstonia eutropha, Paracoccus denitrificans, and Paracoccus pantotrophus can utilize potassium selenate and potassium tellurite as electron acceptors. In order to characterize these reactions, the periplasmic nitrate reductase of R. sphaeroides f. sp. denitrificans IL106 was histidine tagged and purified. The Vmax and Km were determined for nitrate, tellurite, and selenate. For nitrate, values of 39 μmol · min−1 · mg−1 and 0.12 mM were obtained for Vmax and Km, respectively, whereas the Vmax values for tellurite and selenate were 40- and 140-fold lower, respectively. These low activities can explain the observation that depletion of the nitrate reductase in R. sphaeroides does not modify the MIC of tellurite for this organism.  相似文献   

4.
Quinones can function as redox mediators in the unspecific anaerobic reduction of azo compounds by various bacterial species. These quinones are enzymatically reduced by the bacteria and the resulting hydroquinones then reduce in a purely chemical redox reaction the azo compounds outside of the cells. Recently, it has been demonstrated that the addition of lawsone (2-hydroxy-1,4-naphthoquinone) to anaerobically incubated cells of Escherichia coli resulted in a pronounced increase in the reduction rates of different sulfonated and polymeric azo compounds. In the present study it was attempted to identify the enzyme system(s) responsible for the reduction of lawsone by E. coli and thus for the lawsone-dependent anaerobic azo reductase activity. An NADH-dependent lawsone reductase activity was found in the cytosolic fraction of the cells. The enzyme was purified by column chromatography and the amino-terminal amino acid sequence of the protein was determined. The sequence obtained was identical to the sequence of an oxygen-insensitive nitroreductase (NfsB) described earlier from this organism. Subsequent biochemical tests with the purified lawsone reductase activity confirmed that the lawsone reductase activity detected was identical with NfsB. In addition it was proven that also a second oxygen-insensitive nitroreductase of E. coli (NfsA) is able to reduce lawsone and thus to function under adequate conditions as quinone-dependent azo reductase.  相似文献   

5.
Acid-treated extracts of Escherichia coli were tested for their ability to restore reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase activity to an extract of a Neurospora nit-1 mutant which produces a defective enzyme. With wild-type E. coli this complementation activity was more readily detected in the cytoplasmic fraction, although the nitrate reductase activity was found primarily in the particulate fraction. chlB mutants of E. coli appeared to have more complementation activity in the cytoplasm than was observed in the wild type, but no activity in the particulate fraction. The other chl mutants had little or no activity in either fraction. These results suggest that chlB mutants can produce a component or cofactor which is missing in the other mutants and in the Neurospora mutant, but cannot transfer it to the nitrate reductase enzyme.  相似文献   

6.
Natronococcus occultus, a haloalkaliphilic archaeon, was examined for its resistance to potassium tellurite. Cells grown in the presence of 1 mM potassium tellurite reduced it to metallic tellurium resulting in the deposition of intracellular crystals in the cytoplasm. The minimal inhibitory concentration for potassium tellurite was 10 mM. N. occultus had an inducible tellurite reductase activity. Cell-free extracts catalyzed the enzymatic reduction of potassium tellurite in a reaction which was dependent on NADH oxidation and a reduced environment.  相似文献   

7.
The development of recombinant DNA has made it feasible to produce a wide range of valuable protein products in the bacterium Escherichia coli. Extraction of intracellular protein from E. coli is traditionally achieved by mechanical, chemical or enzymatic disruption technology. In this study, thermolysis, which differs from the traditional ones, is presented for disruption of E. coli cells to release recombinant thermostable enzyme. Heat treatment of E. coli at 80 °C is highly effective to destroy the integrity of the bacterial cell wall and release the recombinant thermostable enzyme. At the same time of disruption, the recombinant thermostable enzyme was partially purified. Moreover, thermolysis was carried out in fermentation broth in situ, which may make it a more applicable approach for industrial-scale processes.  相似文献   

8.
The soluble tellurium oxyanion, tellurite, is toxic for most organisms. At least in part, tellurite toxicity involves the generation of oxygen-reactive species which induce an oxidative stress status that damages different macromolecules with DNA, lipids and proteins as oxidation targets. The objective of this work was to determine the effects of tellurite exposure upon the Escherichia coli pyruvate dehydrogenase (PDH) complex. The complex displays two distinct enzymatic activities: pyruvate dehydrogenase that oxidatively decarboxylates pyruvate to acetylCoA and tellurite reductase, which reduces tellurite (Te4+) to elemental tellurium (Teo). PDH complex components (AceE, AceF and Lpd) become oxidized upon tellurite exposure as a consequence of increased carbonyl group formation. When the individual enzymatic activities from each component were analyzed, AceE and Lpd did not show significant changes after tellurite treatment. AceF activity (dihydrolipoil acetyltransferase) decreased ~30% when cells were exposed to the toxicant. Finally, pyruvate dehydrogenase activity decreased >80%, while no evident changes were observed in complex′s tellurite reductase activity.  相似文献   

9.
Oxyanions of tellurium, like tellurate (TeO4 2?) and tellurite (TeO3 2?), are highly toxic for most microorganisms. There are a few reports on the bacterial tellurite resistance mechanism(s). Salinicoccus iranensis, a Gram-positive halophilic bacterium, shows high tellurite resistance and NADH-dependent tellurite reduction activity in vitro. Since little is known regarding TeO3 2? resistance mechanisms in halophilic microorganisms, here one of the enzymatic reduction activities presented in this microorganism is investigated. To enhance the enzymatic activity during purification, the effect of different parameters including time, inoculation, different pHs, different tellurite concentrations and different salts were optimized. We also examined the tellurite removal rates by diethyldithiocarbamate (DDTC) during optimization. In the culture medium the optimum conditions obtained showed that at 30 h, 2 % inoculum, pH 7.5, without tellurite and with 5 % NaCl (w/v) the highest enzyme activity and tellurite removal were observed. Results of the purification procedure done by hydroxyapatite batch-mode, ammonium sulfate precipitation, followed by phenyl-Sepharose and Sephadex G-100 column chromatography, showed that the enzyme consisted of three subunits with molecular masses of 135, 63 and 57 kDa. In addition to tellurite reduction activity, the enzyme was able to reduce nitrate too. Our study extends the knowledge regarding this process in halophilic microorganisms. Besides, this approach may suggest an application for the organism or the enzyme itself to be used for bioremediation of polluted areas with different contaminants due to its nitrate reductase activity.  相似文献   

10.
Chiral β-hydroxy α-amino acid structural motifs are interesting and common synthons present in multiple APIs and drug candidates. To access these chiral building blocks either multistep chemical syntheses are required or the application of threonine aldolases, which catalyze aldol reactions between an aldehyde and glycine. Bioinformatics tools have been utilized to identify the gene encoding threonine aldolase from Vanrija humicola and subsequent preparation of its recombinant version from E. coli fermentation. We planned to implement this enzyme as a key step to access the synthesis of our target API. Beyond this specific application, the aldolase was purified, characterized and the substrate scope of this enzyme further investigated. A number of enzymatic reactions were scaled-up and the products recovered to assess the diastereoselectivity and scalability of this asymmetric synthetic approach towards β-hydroxy α-amino acid chiral building blocks.  相似文献   

11.
Succinate-ubiquinone oxidoreductase (SQR) from Escherichia coli is expressed maximally during aerobic growth, when it catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid cycle and reduces ubiquinone in the membrane. The enzyme is similar in structure and function to fumarate reductase (menaquinol-fumarate oxidoreductase [QFR]), which participates in anaerobic respiration by E. coli. Fumarate reductase, which is proficient in succinate oxidation, is able to functionally replace SQR in aerobic respiration when conditions are used to allow the expression of the frdABCD operon aerobically. SQR has not previously been shown to be capable of supporting anaerobic growth of E. coli because expression of the enzyme complex is largely repressed by anaerobic conditions. In order to obtain expression of SQR anaerobically, plasmids which utilize the PFRD promoter of the frdABCD operon fused to the sdhCDAB genes to drive expression were constructed. It was found that, under anaerobic growth conditions where fumarate is utilized as the terminal electron acceptor, SQR would function to support anaerobic growth of E. coli. The levels of amplification of SQR and QFR were similar under anaerobic growth conditions. The catalytic properties of SQR isolated from anaerobically grown cells were measured and found to be identical to those of enzyme produced aerobically. The anaerobic expression of SQR gave a greater yield of enzyme complex than was found in the membrane from aerobically grown cells under the conditions tested. In addition, it was found that anaerobic expression of SQR could saturate the capacity of the membrane for incorporation of enzyme complex. As has been seen with the amplified QFR complex, E. coli accommodates the excess SQR produced by increasing the amount of membrane. The excess membrane was found in tubular structures that could be seen in thin-section electron micrographs.  相似文献   

12.
In the present study, we expressed the chiA74 gene of Bacillus thuringiensis in Escherichia coli K12 and demonstrated that the active ChiA74 enzyme was produced at a high level in this strain. The ChiA74 enzymatic activity (in units per milliliter) was approximately 500 % greater in E. coli K12 when compared to that produced in E. coli DH5α. Moreover, we showed that, when using our protocol, ChiA74 preparations obtained from recombinant E. coli K12 did not contain live bacteria, although transformable DNA (erm, bla genes) was detected. Nucleic acids were subsequently easily eliminated when samples were treated with magnesium. Importantly, ChiA74 was secreted by E. coli K12 and the active enzyme was shown to generate chitin-derived oligosaccharides (C-OGS) with degrees of polymerization of 2, 3, 4, 5, and 6. From an applied perspective, the C-OGS showed activity against various pathogenic bacteria. In addition, we demonstrated that ChiA74 was not toxic to Hek 293 and 3T3 L1 cells, i.e., the enzyme did not induce apoptosis or affect normal cellular cycle and also did not produce abnormal changes in cell morphology. The potential biotechnological use of producing endochitinase of B. thuringiensis in a microorganism recognized as safe (i.e., E. coli K12) is discussed.  相似文献   

13.
In this study, a new approach for extracellular production of recombinant α-amylase in Escherichia coli was investigated. A gene encoding a highly efficient raw-starch-digesting α-amylase from Bacillus licheniformis ATCC 9945a was cloned and expressed in E. coli. The gene encoding mature α-amylase was cloned into the pDAss expression vector, and secretion of the gene product was regulated by fusion to the signal peptide of DsbA, a well-characterized E. coli periplasmic protein. E. coli BL21 (DE3) carrying pDAss vector containing amylase gene had approximately 2.5-fold higher volumetric enzyme productivity than the natural system. The recombinant enzyme showed higher efficiency for digesting diverse raw starches when compared with the native enzyme and was similar to commercial α-amylase in its ability to hydrolyze raw starches. The properties of the recombinant enzyme demonstrate the potential of the DsbA signal peptide approach for the secretory production of the fully active, industrially important recombinant enzyme.  相似文献   

14.
Cytochromes P450 monooxygenases are highly interesting biocatalysts for biotechnological applications, since they perform a diversity of reactions on a broad range of organic molecules. Nevertheless, the application of cytochromes P450 is limited compared to other enzymes mainly because of the necessity of a functional redox chain to transfer electrons from NAD(P)H to the monooxygenase. In this study, we established a novel robust redox chain based on adrenodoxin, which can deliver electrons to mitochondrial, bacterial and microsomal P450s. The natural membrane-associated reductase of adrenodoxin was replaced by the soluble Escherichia coli reductase. We could demonstrate for the first time that this reductase can transfer electrons to adrenodoxin. In the first step, the electron transfer properties and the potential of this new system were investigated in vitro, and in the second step, an efficient E. coli whole-cell system using CYP264A1 from Sorangium cellulosum So ce56 was developed. It could be demonstrated that this novel redox chain leads to an initial conversion rate of 55 μM/h, which was 52 % higher compared to the 36 μM/h of the redox chain containing adrenodoxin reductase. Moreover, we optimized the whole-cell biotransformation system by a detailed investigation of the effects of different media. Finally, we are able to demonstrate that the new system is generally applicable to other cytochromes P450 by combining it with the biotechnologically important steroid hydroxylase CYP106A2 from Bacillus megaterium.  相似文献   

15.
Synechocystis sp. strain PCC 6803 GTP cyclohydrolase I and human 6-pyruvoyltetrahydropterin synthase were coexpressed in Escherichia coli. The E. coli transformant produced sepiapterin, which was identified by high-performance liquid chromatography and enzymatically converted to dihydrobiopterin by sepiapterin reductase. Aldose reductase, another indispensable enzyme for sepiapterin production, may be endogenous in E. coli.  相似文献   

16.
Most aerobic organisms are exposed to oxidative stress. Looking for enzyme activities involved in the bacterial response to this kind of stress, we focused on the btuE-encoded Escherichia coli BtuE, an enzyme that shares homology with the glutathione peroxidase (GPX) family. This work deals with the purification and characterization of the btuE gene product.Purified BtuE decomposes in vitro hydrogen peroxide in a glutathione-dependent manner. BtuE also utilizes preferentially thioredoxin A to decompose hydrogen peroxide as well as cumene-, tert-butyl-, and linoleic acid hydroperoxides, confirming that its active site confers non-specific peroxidase activity. These data suggest that the enzyme may have one or more organic hydroperoxide as its physiological substrate.The btuE gene was induced when cells were exposed to oxidative stress elicitors that included potassium tellurite, menadione and hydrogen peroxide, among others, suggesting that BtuE could participate in the E. coli response to reactive oxygen species. To our knowledge, this is the first report describing a glutathione peroxidase in E. coli.  相似文献   

17.
The ferredoxin-dependent nitrite reductase from the green alga Chlamydomonas reinhardtii has been cloned, expressed in Escherichia coli as a His-tagged recombinant protein, and purified to homogeneity. The spectra, kinetic properties and substrate-binding parameters of the C. reinhardtii enzyme are quite similar to those of the ferredoxin-dependent spinach chloroplast nitrite reductase. Computer modeling, based on the published structure of spinach nitrite reductase, predicts that the structure of C. reinhardtii nitrite reductase will be similar to that of the spinach enzyme. Chemical modification studies and the ionic-strength dependence of the enzyme’s ability to interact with ferredoxin are consistent with the involvement of arginine and lysine residues on C. reinhardtii nitrite reductase in electrostatically-stabilized binding to ferredoxin. The C. reinhardtii enzyme has been used to demonstrate that hydroxylamine can serve as an electron-accepting substrate for the enzyme and that the product of hydroxylamine reduction is ammonia, providing the first experimental evidence for the hypothesis that hydroxylamine, bound to the enzyme, can serve as a late intermediate during the reduction of nitrite to ammonia catalyzed by the enzyme.  相似文献   

18.
Potassium tellurite (K2TeO3) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.  相似文献   

19.
Here we compare the physiological state of Escherichia coli exposed to tellurite or selenite by using the noninvasive technique of phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. We studied glucose-fed Escherichia coli HB101 cells containing either a normal pUC8 plasmid with no tellurite resistance determinants present or the pTWT100 plasmid which contains the resistance determinants tehAB. No differences could be observed in intracellular ATP levels, the presence or absence of a transmembrane pH gradient, or the levels of phosphorylated glycolytic intermediates when resistant cells were studied by 31P NMR in the presence or absence of tellurite. In the sensitive strain, we observed that the transmembrane pH gradient was dissipated and intracellular ATP levels were rapidly depleted upon exposure to tellurite. Only the level of phosphorylated glycolytic intermediates remained the same as observed with resistant cells. Upon exposure to selenite, no differences could be observed by 31P NMR between resistant and sensitive strains, suggesting that the routes for selenite and tellurite reduction within the cells differ significantly, since only tellurite is able to collapse the transmembrane pH gradient and lower ATP levels in sensitive cells. The presence of the resistance determinant tehAB, by an as yet unidentified detoxification event, protects the cells from uncoupling by tellurite.  相似文献   

20.
NMR relaxation dispersion measurements report on conformational changes occurring on the μs-ms timescale. Chemical shift information derived from relaxation dispersion can be used to generate structural models of weakly populated alternative conformational states. Current methods to obtain such models rely on determining the signs of chemical shift changes between the conformational states, which are difficult to obtain in many situations. Here, we use a “sample and select” method to generate relevant structural models of alternative conformations of the C-terminal-associated region of Escherichia coli dihydrofolate reductase (DHFR), using only unsigned chemical shift changes for backbone amides and carbonyls (1H, 15N, and 13C′). We find that CS-Rosetta sampling with unsigned chemical shift changes generates a diversity of structures that are sufficient to characterize a minor conformational state of the C-terminal region of DHFR. The excited state differs from the ground state by a change in secondary structure, consistent with previous predictions from chemical shift hypersurfaces and validated by the x-ray structure of a partially humanized mutant of E. coli DHFR (N23PP/G51PEKN). The results demonstrate that the combination of fragment modeling with sparse chemical shift data can determine the structure of an alternative conformation of DHFR sampled on the μs-ms timescale. Such methods will be useful for characterizing alternative states, which can potentially be used for in silico drug screening, as well as contributing to understanding the role of minor states in biology and molecular evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号