首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
2.
Regulation of mast cell degranulation is dependent on the subtle interplay of cellular signaling proteins. The Src homology 2 (SH2) domain-containing inositol-5'-phosphatase (SHIP), which acts as the gatekeeper of degranulation, binds via both its SH2 domain and its phosphorylated NPXY motifs to the adapter protein Shc via the latter's phosphorylated tyrosines and phosphotyrosine-binding domain, respectively. This theoretically leaves Shc's SH2 domain available to bind proteins, which might be part of the SHIP/Shc complex. In a search for such proteins, protein kinase C-delta (PKC-delta) was found to coprecipitate in mast cells with Shc and to interact with Shc's SH2 domain following antigen or pervanadate stimulation. Phosphorylation of PKC-delta's Y(332), most likely by Lyn, was found to be responsible for PKC-delta's binding to Shc's SH2 domain. Using PKC-delta(-/-) bone marrow-derived mast cells (BMMCs), we found that the antigen-induced tyrosine phosphorylation of Shc was similar to that in wild-type (WT) BMMCs while that of SHIP was significantly increased. Moreover, increased translocation of PKC-delta to the membrane, as well as phosphorylation at T505, was observed in SHIP(-/-) BMMCs, demonstrating that while PKC-delta regulates SHIP phosphorylation, SHIP regulates PKC-delta localization and activation. Interestingly, stimulation of PKC-delta(-/-) BMMCs with suboptimal doses of antigen yielded a more sustained calcium mobilization and a significantly higher level of degranulation than that of WT cells. Altogether, our data suggest that PKC-delta is a negative regulator of antigen-induced mast cell degranulation.  相似文献   

3.
4.
Mast cells are critical effector cells in the pathophysiology of allergic asthma and other IgE-mediated diseases. The Tec family of tyrosine kinases Itk and Btk serve as critical signal amplifiers downstream of antigen receptors. Although both kinases are expressed and activated in mast cells following FcεRI stimulation, their individual contributions are not clear. To determine whether these kinases play unique and/or complementary roles in FcεRI signaling and mast cell function, we generated Itk and Btk double knock-out mice. Analyses of these mice show decreased mast cell granularity and impaired passive systemic anaphylaxis responses. This impaired response is accompanied by a significant elevation in serum IgE in Itk/Btk double knock-out mice. In vitro analyses of bone marrow-derived mast cells (BMMCs) indicated that Itk/Btk double knock-out BMMCs are defective in degranulation and cytokine secretion responses downstream to FcεRI activation. These responses were accompanied by a significant reduction in PLCγ2 phosphorylation and severely impaired calcium responses in these cells. This defect also results in altered NFAT1 nuclear localization in double knock-out BMMCs. Network analysis suggests that although they may share substrates, Itk plays both positive and negative roles, while Btk primarily plays a positive role in mast cell FcεRI-induced cytokine secretion.  相似文献   

5.
Cross-linking the high-affinity IgE receptor, FcepsilonRI, on mast cells activates signaling pathways leading to the release of preformed inflammatory mediators and the production of cytokines and chemokines associated with allergic disorders. Bone marrow-derived mast cells (BMMCs) from Lyn-deficient (Lyn-/-) mice are hyperresponsive to FcepsilonRI cross-linking with multivalent Ag. Previous studies linked the hyperresponsive phenotype in part to increased Fyn kinase activity and reduced SHIP phosphatase activity in the Lyn-/- BMMCs in comparison with wild-type (WT) cells. In this study, we compared gene expression profiles between resting and Ag-activated WT and Lyn-/- BMMCs to identify other factors that may contribute to the hyperresponsiveness of the Lyn-/- cells. Among genes implicated in the positive regulation of FcepsilonRI signaling, mRNA for the tyrosine kinase, Fyn, and for several proteins contributing to calcium regulation are more up-regulated following Ag stimulation in Lyn-/- BMMCs than in WT BMMCs. Conversely, mRNA for the low-affinity IgG receptor (FcgammaRIIB), implicated in negative regulation of FcepsilonRI-mediated signaling, is more down-regulated in Ag-stimulated Lyn-/- BMMCs than in WT BMMCs. Genes coding for proinflammatory cytokines and chemokines (IL-4, IL-6, IL-13, CSF, CCL1, CCL3, CCL5, CCL7, CCL9, and MIP1beta) are all more highly expressed in Ag-stimulated Lyn-/- mast cells than in WT cells. These microarray data identify Lyn as a negative regulator in Ag-stimulated BMMCs of the expression of genes linked to FcepsilonRI signaling and also to the response pathways that lead to allergy and asthma.  相似文献   

6.
The receptor-like protein tyrosine phosphatase CD45, the most abundant cell surface phosphatase on all nucleated hemopoietic cells, is a critical regulator of the activation status of Src family kinases (SFKs). To study the impact of CD45 on mast cell function, we compare bone marrow-derived mast cells (BMMCs) from CD45-deficient mice and from mice expressing an activating point mutation (E613R) in the juxtamembrane wedge of CD45. In response to Ag-triggered FcεR1-mediated activation, CD45-deficient BMMCs exhibit increased inhibitory Lyn phosphorylation and drastically reduced effector functions (degranulation and cytokine secretion). In contrast, CD45 E613R BMMCs show stronger effector functions after Ag-triggering than wild-type (WT) BMMCs. Despite these dichotomous phenotypes, phosphorylation of the inhibitory tyrosine in the SFK Lyn of CD45 E613R BMMCs is comparable to CD45-deficient BMMCs. This unexpected phenotype most likely is due to attenuated interaction between CD45 E613R and Lyn and a hyper-activation of the Fyn-regulated phosphatidylinositol-3-kinase pathway. Interestingly, depending on the receptor system addressed, CD45-deficient and CD45 E613R BMMCs show uniform phenotypes as well. Proliferation of both cell types in response to IL-3 and/or SF is enhanced compared to WT BMMCs. Together, the data indicate that CD45 plays a complex and essential role in fine-tuning mast cell responses mediated by different ligand–receptor systems.  相似文献   

7.
Activation of Kit receptor protein-tyrosine kinase (PTK) by its ligand Stem Cell Factor (SCF) is required for the development of mast cells, and for the regulation of mast cell proliferation, migration and modulation of inflammatory mediator release. Recent studies have implicated the non-receptor PTK Fps/Fes (hereafter referred to as Fes) in signaling downstream of oncogenic Kit, however, the potential role of Fes in regulating Kit signaling is not well defined. In this study, we show that SCF induces transient tyrosine phosphorylation of wild-type Fes as well as kinase-dead Fes in bone marrow-derived mast cells (BMMCs). The latter finding implicates an upstream kinase acting on Fes, which we identified as Fyn PTK. SCF treatment of BMMCs promoted recruitment of Fes to Kit, potentially via direct interaction of the Fes SH2 domain with phosphorylated Kit. While Fes was not required for SCF-induced signaling to Akt and Erk kinases, Fes-deficient (fes?/?) BMMCs displayed a defect in sustained p38 kinase activation, compared to control cells. SCF-treated Fes-deficient BMMCs also displayed elevated β1 integrin-mediated cell adhesion and spreading on fibronectin, compared to control cells, and a reduction in cell polarization at later times of SCF treatment. Restoring Fes expression in fes?/? BMMCs by retroviral transduction was sufficient to rescue cell spreading and polarization defects. Interestingly, SCF-induced chemotaxis of BMMCs was also defective in Fes-deficient BMMCs, and restored in Fes-rescue BMMCs. Overall, these results implicate Fes in regulating cross-talk between Kit and β1 integrins to promote cytoskeletal reorganization and motility of mast cells.  相似文献   

8.
Studies in B cells from Lyn-deficient mice have identified Lyn as both a kinetic accelerator and negative regulator of signaling through the BCR. The signaling properties of bone marrow-derived mast cells from Lyn(-/-) mice (Lyn(-/-) BMMCs) have also been explored, but their signaling phenotype remains controversial. We confirm that Lyn(-/-) BMMCs release more beta-hexosaminidase than wild-type BMMCs following FcepsilonRI cross-linking and show that multiple mast cell responses to FcepsilonRI cross-linking (the phosphorylation of receptor subunits and other proteins, the activation of phospholipase Cgamma isoforms, the mobilization of Ca(2+), the synthesis of phosphatidylinositol 3,4,5-trisphosphate, the activation of the alpha(4)beta(1) integrin, VLA-4) are slow to initiate in Lyn(-/-) BMMCs, but persist far longer than in wild-type cells. Mechanistic studies revealed increased basal as well as stimulated phosphorylation of the Src kinase, Fyn, in Lyn(-/-) BMMCs. Conversely, there was very little basal or stimulated tyrosine phosphorylation or activity of the inositol phosphatase, SHIP, in Lyn(-/-) BMMCs. We speculate that Fyn may substitute (inefficiently) for Lyn in signal initiation in Lyn(-/-) BMMCs. The loss of SHIP phosphorylation and activity very likely contributes to the increased levels of phosphatidylinositol 3,4,5-trisphosphate and the excess FcepsilonRI signaling in Lyn(-/-) BMMCs. The unexpected absence of the transient receptor potential channel, Trpc4, from Lyn(-/-) BMMCs may additionally contribute to their altered signaling properties.  相似文献   

9.
Aggregation of the high-affinity IgE receptors (FcepsilonRIs) on the surface of granulated mast cells initiates a chain of signaling events culminating in the release of allergy mediators. Although microtubules are involved in mast cell degranulation, the molecular mechanism that controls microtubule rearrangement after FcepsilonRI triggering is poorly understood. In this study, we show that the activation of bone marrow-derived mast cells (BMMCs) induced by FcepsilonRI aggregation or treatment with pervanadate leads to a rapid polymerization of microtubules. This polymerization was not dependent on the presence of Lyn kinase as determined by experiments with BMMCs isolated from Lyn-negative mice. One of the key regulators of microtubule polymerization is gamma-tubulin. Immunoprecipitation experiments revealed that gamma-tubulin from activated cells formed complexes with Fyn and Syk protein tyrosine kinases and several tyrosine phosphorylated proteins from both wild-type and Lyn(-/-) BMMCs. Pretreatment of the cells with Src-family or Syk-family selective tyrosine kinase inhibitors, PP2 or piceatannol, respectively, inhibited the formation of microtubules and reduced the amount of tyrosine phosphorylated proteins in gamma-tubulin complexes, suggesting that Src and Syk family kinases are involved in the initial stages of microtubule formation. This notion was corroborated by pull-down experiments in which gamma-tubulin complex bounds to the recombinant Src homology 2 and Src homology 3 domains of Fyn kinase. We propose that Fyn and Syk kinases are involved in the regulation of binding properties of gamma-tubulin and/or its associated proteins, and thus modulate the microtubule nucleation in activated mast cells.  相似文献   

10.
The aim of this study was to evaluate whether citreorosein (CIT), a naturally occurring anthraquinone isolated from Polygoni cuspidati (P. cuspidati) radix, modulates degranulation and 5-lipoxygenase (5-LO)-dependent leukotriene C(4) (LTC(4)) generation in mast cells. Cit suppresses both degranulation and the generation of LTC(4) in a dose-dependent manner in stem cell factor (SCF)-mediated mouse bone marrow-derived mast cells (BMMCs). With regard to its molecular mechanism of action, we investigated the effects of CIT on intracellular signaling and mast cell activation employing BMMCs. Binding of SCF to c-Kit on mast cell membranes induced increases in intrinsic tyrosine kinase Syk activity and activation of multiple downstream events including phosphorylation of phospholipase Cγ (PLCγ), mobilization of intracellular Ca(2+), phosphatidylinositol 3-kinase (PI3K), Akt, MAP kinases (MAPKs), translocation of phospho-phospholipase A(2) (PLA(2)) and 5-LO. The results from the biochemical analysis demonstrate that CIT attenuates degranulation and LTC(4) generation through the suppression of multiple step signaling and would be beneficial for the prevention of allergic inflammation.  相似文献   

11.
12.
Tyrosine phosphorylation in the cytoplasmic domains of FcepsilonRI by the Src family kinase Lyn initiates a signaling cascade leading to mast cell activation. In this study, we show that a recently identified transmembrane protein, Csk-binding protein (Cbp), also known as phospoprotein associated with glycosphingolipid-enriched microdomains (PAG), negatively regulates FcepsilonRI signaling. In rat basophilic leukemia (RBL)-2H3 cells, the levels of tyrosine phosphorylation of Cbp/PAG and its association with Csk, a negative regulator for Lyn, significantly elevate immediately after aggregation of FcepsilonRI. An overexpression of Cbp/PAG in RBL-2H3 cells inhibits FcepsilonRI-mediated cell activation. This is accompanied with decreased levels of tyrosine phosphorylation of FcepsilonRI, association of FcepsilonRI with Lyn, and FcepsilonRI-associated tyrosine kinase activity. These findings combined with the fact that Cbp/PAG, Lyn, and aggregated FcepsilonRI are localized to lipid rafts, suggest that upon FcepsilonRI aggregation Cbp/PAG down-regulates the receptor-associated Lyn activity through relocating Csk to rafts, thereby efficiently mediating feedback inhibition of FcepsilonRI signaling.  相似文献   

13.
The protein tyrosine kinase Syk is an essential element in several cascades coupling Ag receptors to cell responses. Syk and the mitogen-activated protein kinase extracellular signal-regulated kinase 1 (ERK1) were found to form a tight complex in both resting and Ag-stimulated rat mucosal-type mast cells (rat basophilic leukemia 2H3 cell line RBL-2H3). A direct serine phosphorylation and activation of Syk by ERK was observed in in vitro experiments. Moreover the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) kinase (MEK) inhibitors markedly decreased the Ag-induced phosphorylation of the tyrosyl residues of Syk and its activation as well as suppressed the degranulation of the cells. These results suggest a positive feedback regulation of Syk by ERK in the cascade coupling the type 1 Fc epsilon receptor to the secretory response of mast cells; hence, the existence of a novel type of cross-talk between protein serine/threonine kinases and protein tyrosine kinases is suggested.  相似文献   

14.
The heptahelical AT(1) G-protein-coupled receptor lacks inherent tyrosine kinase activity. Angiotensin II binding to AT(1) nevertheless activates several tyrosine kinases and stimulates both tyrosine phosphorylation and phosphatase activity of the SHP-2 tyrosine phosphatase in vascular smooth muscle cells. Since a balance between tyrosine kinase and tyrosine phosphatase activities is essential in angiotensin II signaling, we investigated the role of SHP-2 in modulating tyrosine kinase signaling pathways by stably transfecting vascular smooth muscle cells with expression vectors encoding wild-type SHP-2 protein or a catalytically inactive SHP-2 mutant. Our data indicate that SHP-2 is an efficient negative regulator of angiotensin II signaling. SHP-2 inhibited c-Src catalytic activity by dephosphorylating a positive regulatory tyrosine 418 within the Src kinase domain. Importantly, SHP-2 expression also abrogated angiotensin II-induced activation of ERK, whereas expression of catalytically inactive SHP-2 caused sustained ERK activation. Thus, SHP-2 likely regulates angiotensin II-induced MAP kinase signaling by inactivating c-Src. These SHP-2 effects were specific for a subset of angiotensin II signaling pathways, since SHP-2 overexpression failed to influence Jak2 tyrosine phosphorylation or Fyn catalytic activity. These data show SHP-2 represents a critical negative regulator of angiotensin II signaling, and further demonstrate a new function for this phosphatase in vascular smooth muscle cells.  相似文献   

15.
Although SHIP is a well-established suppressor of IgE plus Ag-induced degranulation and cytokine production in bone marrow-derived mast cells (BMMCs), little is known about its role in connective tissue (CTMCs) or mucosal (MMCs) mast cells. In this study, we compared SHIP's role in the development as well as the IgE plus Ag and TLR-induced activation of CTMCs, MMCs, and BMMCs and found that SHIP delays the maturation of all three mast cell subsets and, surprisingly, that it is a positive regulator of IgE-induced BMMC survival. We also found that SHIP represses IgE plus Ag-induced degranulation of all three mast cell subsets and that TLR agonists do not trigger their degranulation, whether SHIP is present or not, nor do they enhance IgE plus Ag-induced degranulation. In terms of cytokine production, we found that in MMCs and BMMCs, which are poor producers of TLR-induced cytokines, SHIP is a potent negative regulator of IgE plus Ag-induced IL-6 and TNF-α production. Surprisingly, however, in splenic or peritoneal derived CTMCs, which are poor producers of IgE plus Ag-induced cytokines, SHIP is a potent positive regulator of TLR-induced cytokine production. Lastly, cell signaling and cytokine production studies with and without LY294002, wortmannin, and PI3Kα inhibitor-2, as well as with PI3K p85α(-/-) BMMCs and CTMCs, are consistent with SHIP positively regulating TLR-induced cytokine production via an adaptor-mediated pathway while negatively regulating IgE plus Ag-induced cytokine production by repressing the PI3K pathway.  相似文献   

16.
PAG/Cbp (hereafter named PAG) is a transmembrane adaptor molecule found in lipid rafts. In resting human T cells, PAG is tyrosine phosphorylated and associated with Csk, an inhibitor of Src-related protein tyrosine kinases. These modifications are rapidly lost in response to T-cell receptor (TCR) stimulation. Overexpression of PAG was reported to inhibit TCR-mediated responses in Jurkat T cells. Herein, we have examined the physiological relevance and the mechanism of PAG-mediated inhibition in T cells. Our studies showed that PAG tyrosine phosphorylation and association with Csk are suppressed in response to activation of normal mouse T cells. By expressing wild-type and phosphorylation-defective (dominant-negative) PAG polypeptides in these cells, we found that the inhibitory effect of PAG is dependent on its capacity to be tyrosine phosphorylated and to associate with Csk. PAG-mediated inhibition was accompanied by a repression of proximal TCR signaling and was rescued by expression of a constitutively activated Src-related kinase, implying that it is due to an inactivation of Src kinases by PAG-associated Csk. We also attempted to identify the protein tyrosine phosphatases (PTPs) responsible for dephosphorylating PAG in T cells. Through cell fractionation studies and analyses of genetically modified mice, we established that PTPs such as PEP and SHP-1 are unlikely to be involved in the dephosphorylation of PAG in T cells. However, the transmembrane PTP CD45 seems to play an important role in this process. Taken together, these data provide firm evidence that PAG is a bona fide negative regulator of T-cell activation as a result of its capacity to recruit Csk. They also suggest that the inhibitory function of PAG in T cells is suppressed by CD45. Lastly, they support the idea that dephosphorylation of proteins on tyrosine residues is critical for the initiation of T-cell activation.  相似文献   

17.
Aggregation of the high affinity receptor for IgE (FcepsilonRI) induces activation of mast cells. In this study we show that upon low intensity stimulation of FcepsilonRI with monomeric IgE, IgE plus anti-IgE, or IgE plus low Ag, Lyn (a Src family kinase) positively regulates degranulation, cytokine production, and survival, whereas Lyn works as a negative regulator of high intensity stimulation with IgE plus high Ag. Low intensity stimulation suppressed Lyn kinase activity and its association with FcepsilonRI beta subunit, whereas high intensity stimulation enhanced Lyn activity and its association with FcepsilonRI beta. The latter induced much higher levels of FcepsilonRI beta phosphorylation and Syk activity than the former. Downstream positive signaling molecules, such as Akt and p38, were positively and negatively regulated by Lyn upon low and high intensity stimulations, respectively. In contrast, the negative regulators, SHIP and Src homology 2 domain-containing protein tyrosine phosphatase-1, interacted with FcepsilonRI beta, and their phosphorylation was controlled by Lyn. Therefore, we conclude that Lyn-mediated positive vs negative regulation depends on the intensity of the stimuli. Studies of mutant FcepsilonRI beta showed that FcepsilonRI beta subunit-ITAM (ITAM motif) regulates degranulation and cytokine production positively and negatively depending on the intensity of FcepsilonRI stimulation. Furthermore, Lyn-mediated negative regulation was shown to be exerted via the FcepsilonRI beta-ITAM.  相似文献   

18.
Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane.  相似文献   

19.
IgE-antigen-dependent crosslinking of the high affinity IgE receptor (FcεRI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca2+) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls FcεRI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed FcεRI-dependent Ca2+ mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn −/− knock out mice. Fyn −/− BMMCs showed a marked defect in extracellular Ca2+ influx after FcεRI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd3+) partially blocked FcεRI-induced Ca2+ influx in WT cells but, in contrast, completely inhibited Ca2+ mobilization in Fyn −/− cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca2+ channels (2-aminoethoxyphenyl-borane, 2-APB) blocked FcεRI-induced maximal Ca2+ rise in WT but not in Fyn −/− cells. Ca2+ entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in FcεRI-stimulated mast cells.  相似文献   

20.
Activation of the high affinity IgE-binding receptor (FcεRI) results in the tyrosine phosphorylation of two conserved tyrosines located close to the COOH terminus of the protein-tyrosine kinase Syk. Synthetic peptides representing the last 10 amino acids of the tail of Syk with these two tyrosines either nonphosphorylated or phosphorylated were used to precipitate proteins from mast cell lysates. Proteins specifically precipitated by the phosphorylated peptide were identified by mass spectrometry. These included the adaptor proteins SLP-76, Nck-1, Grb2, and Grb2-related adaptor downstream of Shc (GADS) and the protein phosphatases SHIP-1 and TULA-2 (also known as UBASH3B or STS-1). The presence of these in the precipitates was further confirmed by immunoblotting. Using the peptides as probes in far Western blots showed direct binding of the phosphorylated peptide to Nck-1 and SHIP-1. Immunoprecipitations suggested that there were complexes of these proteins associated with Syk especially after receptor activation; in these complexes are Nck, SHIP-1, SLP-76, Grb2, and TULA-2 (UBASH3B or STS-1). The decreased expression of TULA-2 by treatment of mast cells with siRNA increased the FcεRI-induced tyrosine phosphorylation of the activation loop tyrosines of Syk and the phosphorylation of phospholipase C-γ2. There was parallel enhancement of the receptor-induced degranulation and activation of nuclear factor for T cells or nuclear factor κB, indicating that TULA-2, like SHIP-1, functions as a negative regulator of FcεRI signaling in mast cells. Therefore, once phosphorylated, the terminal tyrosines of Syk bind complexes of proteins that are positive and negative regulators of signaling in mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号