首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cause of elevated level of amyloid β-peptide (Aβ42) in common late-onset sporadic [Alzheimer's disease (AD)] has not been established. Here, we show that the membrane lipid peroxidation product 4-hydroxynonenal (HNE) is associated with amyloid and neurodegenerative pathologies in AD and that it enhances γ-secretase activity and Aβ42 production in neurons. The γ-secretase substrate receptor, nicastrin, was found to be modified by HNE in cultured neurons and in brain specimens from patients with AD, in which HNE-nicastrin levels were found to be correlated with increased γ-secretase activity and Aβ plaque burden. Furthermore, HNE modification of nicastrin enhanced its binding to the γ-secretase substrate, amyloid precursor protein (APP) C99. In addition, the stimulation of γ-secretase activity and Aβ42 production by HNE were blocked by an HNE-scavenging histidine analog in a 3xTgAD mouse model of AD. These findings suggest a specific molecular mechanism by which oxidative stress increases Aβ42 production in AD and identify HNE as a novel therapeutic target upstream of the γ-secretase cleavage of APP.  相似文献   

2.
Generation and accumulation of the amyloid β peptide (Aβ) following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 (Beta-site APP Cleaving Enzyme-1, β-secretase) and γ-secretase is a main causal factor of Alzheimer's disease (AD). Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Aβ, is an attractive therapeutic approach for the treatment of AD. In this study, we discovered that natural flavonoids act as non-peptidic BACE-1 inhibitors and potently inhibit BACE-1 activity and reduce the level of secreted Aβ in primary cortical neurons. In addition, we demonstrated the calculated docking poses of flavonoids to BACE-1 and revealed the interactions of flavonoids with the BACE-1 catalytic center. We firstly revealed novel pharmacophore features of flavonoids by using cell-free, cell-based and in silico docking studies. These results contribute to the development of new BACE-1 inhibitors for the treatment of AD.  相似文献   

3.
G蛋白偶联受体(GPCRs)在大脑信号传递中至关重要,而在阿尔兹海默症(AD)中,G蛋白偶联受体通过调控α-、β-及γ-分泌酶分泌、淀粉样前体蛋白(APP)生成及β-淀粉样蛋白(Aβ)降解,直接影响β-淀粉样蛋白在神经系统信号级联反应;另外,阿尔兹海默症中β-淀粉样蛋白的生成可以扰乱G蛋白偶联受体功能.因此,阐明G蛋白偶联受体与阿尔兹海默症发病之间的关联有助于开发以G蛋白偶联受体为靶点的阿尔兹海默症治疗药物.  相似文献   

4.
γ-Secretase is a multiprotein intramembrane cleaving aspartyl protease (I-CLiP) that catalyzes the final cleavage of the amyloid β precursor protein (APP) to release the amyloid β peptide (Aβ). Aβ is the primary component of senile plaques in Alzheimer's disease (AD), and its mechanism of production has been studied intensely. γ-Secretase executes multiple cleavages within the transmembrane domain of APP, with cleavages producing Aβ and the APP intracellular domain (AICD), referred to as γ and ε, respectively. The heterogeneous nature of the γ cleavage that produces various Aβ peptides is highly relevant to AD, as increased production of Aβ 1-42 is genetically and biochemically linked to the development of AD. We have identified an amino acid in the juxtamembrane region of APP, lysine 624, on the basis of APP695 numbering (position 28 relative to Aβ) that plays a critical role in determining the final length of Aβ peptides released by γ-secretase. Mutation of this lysine to alanine (K28A) shifts the primary site of γ-secretase cleavage from 1-40 to 1-33 without significant changes to ε cleavage. These results further support a model where ε cleavage occurs first, followed by sequential proteolysis of the remaining transmembrane fragment, but extend these observations by demonstrating that charged residues at the luminal boundary of the APP transmembrane domain limit processivity of γ-secretase.  相似文献   

5.
Pathogenic generation of amyloid β-peptide (Aβ) by sequential cleavage of β-amyloid precursor protein (APP) by β- and γ-secretases is widely believed to causally underlie Alzheimer disease (AD). β-Secretase initially cleaves APP thereby generating a membrane-bound APP C-terminal fragment, from which γ-secretase subsequently liberates 37-43-amino acid long Aβ species. Although the latter cleavages are intramembranous and although lipid alterations have been implicated in AD, little is known of how the γ-secretase-mediated release of the various Aβ species, in particular that of the pathogenic longer variants Aβ(42) and Aβ(43), is affected by the lipid environment. Using a cell-free system, we have directly and systematically investigated the activity of γ-secretase reconstituted in defined model membranes of different thicknesses. We found that bilayer thickness is a critical parameter affecting both total activity as well as cleavage specificity of γ-secretase. Whereas the generation of the pathogenic Aβ(42/43) species was markedly attenuated in thick membranes, that of the major and rather benign Aβ(40) species was enhanced. Moreover, the increased production of Aβ(42/43) by familial AD mutants of presenilin 1, the catalytic subunit of γ-secretase, could be substantially lowered in thick membranes. Our data demonstrate an effective modulation of γ-secretase activity by membrane thickness, which may provide an approach to lower the generation of the pathogenic Aβ(42/43) species.  相似文献   

6.
The abnormal production and accumulation of β-amyloid peptide (Aβ), which is produced from amyloid precursor protein (APP) by the sequential actions of β-secretase and γ-secretase, are thought to be the initial causative events in the development of Alzheimer's disease (AD). Accumulating evidence suggests that vascular factors play an important role in the pathogenesis of AD. Specifically, studies have suggested that one vascular factor in particular, oxidized low density lipoprotein (oxLDL), may play an important role in regulating Aβ formation in AD. However, the mechanism by which oxLDL modulates Aβ formation remains elusive. In this study, we report several new findings that provide biochemical evidence suggesting that the cardiovascular risk factor oxLDL may contribute to Alzheimer's disease by increasing Aβ production. First, we found that lysophosphatidic acid (LPA), the most bioactive component of oxLDL induces increased production of Aβ. Second, our data strongly indicate that LPA induces increased Aβ production via upregulating β-secretase expression. Third, our data strongly support the notion that different isoforms of protein kinase C (PKC) may play different roles in regulating APP processing. Specifically, most PKC members, such as PKCα, PKCβ, and PKCε, are implicated in regulating α-secretase-mediated APP processing; however, PKCδ, a member of the novel PKC subfamily, is involved in LPA-induced upregulation of β-secretase expression and Aβ production. These findings may contribute to a better understanding of the mechanisms by which the cardiovascular risk factor oxLDL is involved in Alzheimer's disease.  相似文献   

7.
Alzheimer disease (AD) is the most common type of dementia and is characterized pathologically by the presence of neurofibrillary tangles (NFTs), senile plaques (SPs), and loss of synapses. The main component of SP is amyloid-beta peptide (Aβ), a 39 to 43 amino acid peptide, generated by the proteolytic cleavage of amyloid precursor protein (APP) by the action of beta- and gamma-secretases. The presenilins (PS) are components of the γ-secretase, which contains the protease active center. Mutations in PS enhance the production of the Aβ42 peptide. To date, more than 160 mutations in PS1 have been identified. Many PS mutations increase the production of the β-secretase-mediated C-terminal (CT) 99 amino acid-long fragment (CT99), which is subsequently cleaved by γ-secretase to yield Aβ peptides. Aβ has been proposed to induce oxidative stress and neurotoxicity. Previous studies from our laboratory and others showed an age-dependent increase in oxidative stress markers, loss of lipid asymmetry, and Aβ production and amyloid deposition in the brain of APP/PS1 mice. In the present study, we used APP (NLh)/APP(NLh) × PS-1(P246L)/PS-1(P246L) human double mutant knock-in APP/PS-1 mice to identify specific targets of brain protein carbonylation in an age-dependent manner. We found a number of proteins that are oxidatively modified in APP/PS1 mice compared to age-matched controls. The relevance of the identified proteins to the progression and pathogenesis of AD is discussed.  相似文献   

8.
Assemblies of β-amyloid (Aβ) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The generation of Aβ is coupled to neuronal activity, but the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aβ. Arc is a postsynaptic protein that recruits endophilin2/3 and dynamin to early/recycling endosomes that traffic AMPA receptors to reduce synaptic strength in both hebbian and non-hebbian forms of plasticity. The Arc-endosome also traffics APP and BACE1, and Arc physically associates with presenilin1 (PS1) to regulate γ-secretase trafficking and confer activity dependence. Genetic deletion of Arc reduces Aβ load in a transgenic mouse model of AD. In concert with the finding that patients with AD can express anomalously high levels of Arc, we hypothesize that Arc participates in the pathogenesis of AD.  相似文献   

9.
Alzheimer's disease (AD) is a neurodegenerative disorder that leads to progressive cognitive decline. Recent studies from our group and others have suggested that certain G-protein coupled receptors (GPCRs) can influence the processing of the amyloid precursor protein (APP). Earlier, we demonstrated that stimulation of a chemokine receptor, CXCR2, results in enhanced γ-secretase activity and in increased amyloid-beta (Aβ) production. Taken together, results obtained from in vitro studies indicate that therapeutic targeting of CXCR2 might aid in lowering Aβ levels in the AD brain. To better understand the precise function and to predict the consequences of CXCR2 depletion in the AD brain, we have crossed CXCR2 knockout mice with mice expressing presenilin (PS1 M146L) and APPsw mutations (PSAPP). Our present study confirms that CXCR2 depletion results in reduction of Aβ with concurrent increases of γ-secretase substrates. At the mechanistic level, the effect of CXCR2 on γ-secretase was not found to occur via their direct interaction. Furthermore, we provide evidence that Aβ promotes endocytosis of CXCR2 via increasing levels of CXCR2 ligands. In conclusion, our current study confirms the regulatory role of CXCR2 in APP processing, and poses it as a potential target for developing novel therapeutics for intervention in AD.  相似文献   

10.
Accumulation of the β-amyloid (Aβ) peptides is one of the major pathologic hallmarks in the brains of Alzheimer's disease (AD) patients. Aβ is generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) catalyzed by β- and γ-secretases. Inhibition of Aβ production by γ-secretase inhibitors (GSIs) is thus being pursued as a target for treatment of AD. In addition to processing APP, γ-secretase also catalyzes proteolytic cleavage of other transmembrane substrates, with the best characterized one being the cell surface receptor Notch. GSIs reduce Aβ production in animals and humans but also cause significant side effects because of the inhibition of Notch processing. The development of GSIs that reduce Aβ production and have less Notch-mediated side effect liability is therefore an important goal. γ-Secretase is a large membrane protein complex with four components, two of which have multiple isoforms: presenilin (PS1 or PS2), aph-1 (aph-1a or aph-1b), nicastrin, and pen-2. Here we describe the reconstitution of four γ-secretase complexes in Sf9 cells containing PS1--aph-1a, PS1--aph-1b, PS2--aph-1a, and PS2--aph-1b complexes. While PS1--aph-1a, PS1--aph-1b, and PS2--aph-1a complexes displayed robust γ-secretase activity, the reconstituted PS2--aph-1b complex was devoid of detectable γ-secretase activity. γ-Secretase complexes containing PS1 produced a higher proportion of the toxic species Aβ42 than γ-secretase complexes containing PS2. Using the reconstitution system, we identified MRK-560 and SCH 1500022 as highly selective inhibitors of PS1 γ-secretase activity. These findings may provide important insights into developing a new generation of γ-secretase inhibitors with improved side effect profiles.  相似文献   

11.
Amyloid Precursor Protein (APP) processing to amyloid beta (Aβ) is a major hallmark of Alzheimer's disease (AD). The amyloid cascade hypothesis postulates that Aβ accumulation and aggregation causes AD, however many therapeutics targeting Aβ have failed recently. Decades of research describe metabolic deficits in AD. Mitochondrial dysfunction is observed in AD subjects within the brain and systemically. APP and γ-secretase are localized to mitochondria. APP can be processed within mitochondria and its localization to mitochondria affects function. Here we discuss the evidence showing APP and γ-secretase localize to mitochondria. We also discuss the implications for the function of APP and its cleavage products in regulating mitochondrial function.  相似文献   

12.
In Alzheimer disease, oligomeric amyloid β-peptide (Aβ) species lead to synapse loss and neuronal death. γ-Secretase, the transmembrane protease complex that mediates the final catalytic step that liberates Aβ from its precursor protein (APP), has a multitude of substrates, and therapeutics aimed at reducing Aβ production should ideally be specific for APP cleavage. It has been shown that APP can be processed in lipid rafts, and γ-secretase-associated proteins can affect Aβ production. Here, we use a biotinylated inhibitor for affinity purification of γ-secretase and associated proteins and mass spectrometry for identification of the purified proteins, and we identify novel γ-secretase-associated proteins in detergent-resistant membranes from brain. Furthermore, we show by small interfering RNA-mediated knockdown of gene expression that a subset of the γ-secretase-associated proteins, in particular voltage-dependent anion channel 1 (VDAC1) and contactin-associated protein 1 (CNTNAP1), reduced Aβ production (Aβ40 and Aβ42) by around 70%, whereas knockdown of presenilin 1, one of the essential γ-secretase complex components, reduced Aβ production by 50%. Importantly, these proteins had a less pronounced effect on Notch processing. We conclude that VDAC1 and CNTNAP1 associate with γ-secretase in detergent-resistant membranes and affect APP processing and suggest that molecules that interfere with this interaction could be of therapeutic use for Alzheimer disease.  相似文献   

13.
Markers for caspase activation and apoptosis have been shown in brains of Alzheimer's disease (AD) patients and AD-mouse models. In neurons, caspase activation is associated with elevated amyloid β-peptide (Aβ) production. Caspases cleave numerous substrates including presenilin-1 (PS1). The cleavage takes place in the large cytosolic loop of PS1-C-terminal fragment (PS1CTF), generating a truncated PS1CTF lacking half of the loop domain (caspCTF). The loop has been shown to possess important regulatory functions with regard to Aβ(40) and Aβ(42) production. Previously, we have demonstrated that γ-secretase complexes are active during apoptosis regardless of caspase cleavage in the PS1CTF-loop. Here, a PS1/PS2-knockout mouse blastocyst-derived cell line was used to establish stable or transient cell lines expressing either caspCTF or full-length CTF (wtCTF). We show that caspCTF restores γ-secretase activity and forms active γ-secretase complexes together with Nicastrin, Pen-2, Aph-1 and PS1-N-terminal fragment. Further, caspCTF containing γ-secretase complexes have a sustained capacity to cleave amyloid precursor protein (APP) and Notch, generating APP and Notch intracellular domain, respectively. However, when compared to wtCTF cells, caspCTF cells exhibit increased intracellular production of Aβ(42) accompanied by increased intracellular Aβ(42) /Aβ(40) ratio without changing the Aβ secretion pattern. Similarly, induction of apoptosis in wtCTF cells generate a similar shift in intracellular Aβ pattern with increased Aβ(42) /Aβ(40) ratio. In summary, we show that caspase cleavage of PS1 generates a γ-secretase complex that increases the intracellular Aβ(42) /Aβ(40) ratio. This can have implications for AD pathogenesis and suggests caspase inhibitors as potential therapeutic agents.  相似文献   

14.
The critical pathological feature of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ), the main constituent of amyloid plaques. β-amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretase generating Aβ at endosomes or non-amyloidogenic processing by α-secretase precluding the production of Aβ at the plasma membrane. Recently, several natural products have been widely researched on the prevention of Aβ accumulation for AD treatment. We previously reported that Lycoris chejuensis K. Tae et S. Ko (CJ), which originated from Jeju Island in Korea, improved the disrupted memory functions and reduced Aβ production in vivo. Here, we further explored the effect of its active component, 7-deoxy-trans-dihydronarciclasine (coded as E144), on Aβ generation and the underlying mechanism. Our results showed that E144 reduced the level of APP, especially its mature form, in HeLa cells overexpressing human APP with the Swedish mutation. Concomitantly, E144 decreased the levels of Aβ, sAPPβ, sAPPα, and C-terminal fragment. In addition, administration of E144 normalized the behavioral deficits in Tg2576 mice, an APP transgenic mouse model of AD. E144 also decreased the Aβ and APP levels in the cerebral cortex of Tg2576 mice. Thus, we propose that E144 could be a potential drug candidate for an anti-amyloid disease-modifying AD therapy.  相似文献   

15.
Abstract γ-Secretase is a membrane-embedded protease complex with presenilin as the catalytic component. Cleavage within the transmembrane domain of the amyloid β-protein precursor (APP) by γ-secretase produces the C-terminus of the amyloid β-peptide (Aβ), a proteolytic product prone to aggregation and strongly linked to Alzheimer's disease (AD). Presenilin mutations are associated with early-onset AD, but their pathogenic mechanisms are unclear. One hypothesis is that these mutations cause AD through a toxic gain of function, changing γ-secretase activity to increase the proportion of 42-residue Aβ over the more soluble 40-residue form. A competing hypothesis is that the mutations cause AD through a loss of function, by reducing γ-secretase activity. However, γ-secretase apparently has two types of activities, an endoproteolytic function that first cuts APP to generate a 48/49-residue form of Aβ, and a carboxypeptidase activity that processively trims these longer Aβ intermediates approximately every three residues to form shorter, secreted forms. Recent studies suggest a resolution of the gain-of-function vs. loss-of-function debate: presenilin mutations may increase the proportion of longer, more aggregation-prone Aβ by specifically decreasing the trimming activity of γ-secretase. That is, the reduction of this particular proteolytic function of presenilin, not its endoproteolytic activity, may lead to the neurotoxic gain of function.  相似文献   

16.
Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by β-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of β-amyloid (Aβ) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex—which contains presenilin 1 or 2 as the catalytic core—could trigger marked Aβ accumulation.Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions.Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aβ*56 accumulates more quickly in the OE.Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms.  相似文献   

17.
Holmes O  Paturi S  Ye W  Wolfe MS  Selkoe DJ 《Biochemistry》2012,51(17):3565-3575
The 19-transmembrane multisubunit γ-secretase complex generates the amyloid β-peptide (Aβ) of Alzheimer's disease (AD) by intramembrane proteolysis of the β-amyloid precursor protein (APP). Despite substantial advances in elucidating how this protein complex functions, the effect of the local membrane lipid microenvironment on γ-secretase cleavage of substrates is still poorly understood. Using detergent-free proteoliposomes to reconstitute purified human γ-secretase, we examined the effects of fatty acyl (FA) chain length, saturation and double-bond isomerization, and membrane lipid polar headgroups on γ-secretase function. We analyzed γ-secretase activity and processivity [i.e., sequential cleavages in the APP transmembrane domain that convert longer Aβ species (e.g., Aβ(46)) into shorter ones (e.g., Aβ(40))] by quantifying the APP intracellular domain (AICD) and various Aβ peptides, including via a bicine/urea gel system that detects multiple Aβ lengths. These assays revealed several trends. (1) Switching from a cis to a trans isomer of a monounsaturated FA chain in phosphatidylcholine (PC) increased γ-activity, did not affect Aβ(42):Aβ(40) ratios, but decreased the ratio of long (≥42) versus short (≤41) Aβ peptides. (2) Increasing the FA carbon chain length (14, 16, 18, and 20) increased γ-activity, reduced longer Aβ species, and reduced the Aβ(42):Aβ(40) ratio. (3) Shifting the position of the double bond in 18:1(Δ9-cis) PC to the Δ6 position substantially reduced activity. (4) Gangliosides increased γ-activity but decreased processivity, thus elevating the Aβ(42):Aβ(40) ratio. (5) Phosphatidylserine decreased γ-activity but increased processivity. (6) Phosphatidylinositol strongly inhibited γ-activity. Overall, our results show that subtle changes in membrane lipid composition can greatly influence γ-secretase activity and processivity, suggesting that relatively small changes in lipid membrane composition may affect the risk of AD at least as much as presenilin or APP mutations do.  相似文献   

18.
Supramolecular self-assembly of amyloidogenic peptides is closely associated with numerous pathological conditions. For instance, Alzheimer´s disease (AD) is characterized by abundant amyloid plaques originating from the proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Compounds named γ-secretase modulators (GSMs) can shift the substrate cleavage specificity of γ-secretase toward the production of non-amyloidogenic, shorter Aβ fragments. Herein, we describe the synthesis of highly potent acidic GSMs, equipped with a photoreactive diazirine moiety for photoaffinity labeling. The probes labeled the N-terminal fragment of presenilin (the catalytic subunit of γ-secretase), supporting a mode of action involving binding to γ-secretase. This fundamental step toward the elucidation of the molecular mechanism governing the GSM-induced shift in γ-secretase proteolytic specificity should pave the way for the development of improved drugs against AD.  相似文献   

19.

Background

The generation of the amyloid-β peptide (Aβ) through the proteolytic processing of the amyloid precursor protein (APP) is a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R) family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing.

Results

Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production.

Conclusion

These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase.  相似文献   

20.
Alzheimer's disease is the most common dementia afflicting the elderly in modern society. This disease arises from the neurotoxicity elicited by abnormal aggregates of amyloid-β (Aβ) protein. Such aggregates form through the cleavage of amyloid precursor protein (APP) by β-secretase and the subsequent proteolysis of the APP C-terminal fragment (APP-βCTF or C99) by γ-secretase to yield Aβ and APP intracellular domain (AICD). Recent evidence suggests that C99 and AICD may exert harmful effects on cells, suggesting that the proteolytic products of APP, including Aβ, C99, and AICD, could play a pivotal role in neuronal viability. Here, we demonstrate that ligand-activated EphA4 signaling governs the proteostasis of C99, AICD, and Aβ, without significantly affecting γ-secretase activity. EphA4 induced accumulation of C99 and AICD through a Lyn-dependent pathway; activation of this pathway triggered phosphorylation of EphA4, resulting in positive feedback of C99 and AICD proteostasis. Inhibition of EphA4 by dasatinib, a receptor tyrosine kinase inhibitor, effectively suppressed C99 and AICD accumulation. Furthermore, EphA4 signaling controlled C99 and AICD proteolysis through the ubiquitin–proteasome system. In conclusion, we have identified an EphA4–Lyn pathway that is essential for the metabolism of APP and its proteolytic derivatives, thereby providing novel pharmacological targets for the development of anti-Aβ therapeutics for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号