首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Licht S  Lee I 《Biochemistry》2008,47(12):3595-3605
Clp, Lon, and FtsH proteases are proteolytic molecular machines that use the free energy of ATP hydrolysis to unfold protein substrates and processively present them to protease active sites. Here we review recent biochemical and structural studies relevant to the mechanism of ATP-dependent processive proteolysis. Despite the significant structural differences among the Clp, Lon, and FtsH proteases, these enzymes share important mechanistic features. In these systems, mechanistic studies have provided evidence for ATP binding and hydrolysis-driven conformational changes that drive translocation of substrates, which has significant implications for the processive mechanism of proteolysis. These studies indicate that the nucleotide (ATP, ADP, or nonhydrolyzable ATP analogues) occupancy of the ATPase binding sites can influence the binding mode and/or binding affinity for protein substrates. A general mechanism is proposed in which the communication between ATPase active sites and protein substrate binding regions coordinates a processive cycle of substrate binding, translocation, proteolysis, and product release.  相似文献   

2.
Degradation of recalcitrant polysaccharides in nature is typically accomplished by mixtures of processive and nonprocessive glycoside hydrolases (GHs), which exhibit synergistic activity wherein nonprocessive enzymes provide new sites for productive attachment of processive enzymes. GH processivity is typically attributed to active site geometry, but previous work has demonstrated that processivity can be tuned by point mutations or removal of single loops. To gain additional insights into the differences between processive and nonprocessive enzymes that give rise to their synergistic activities, this study reports the crystal structure of the catalytic domain of the GH family 18 nonprocessive endochitinase, ChiC, from Serratia marcescens. This completes the structural characterization of the co-evolved chitinolytic enzymes from this bacterium and enables structural analysis of their complementary functions. The ChiC catalytic module reveals a shallow substrate-binding cleft that lacks aromatic residues vital for processivity, a calcium-binding site not previously seen in GH18 chitinases, and, importantly, a displaced catalytic acid (Glu-141), suggesting flexibility in the catalytic center. Molecular dynamics simulations of two processive chitinases (ChiA and ChiB), the ChiC catalytic module, and an endochitinase from Lactococcus lactis show that the nonprocessive enzymes have more flexible catalytic machineries and that their bound ligands are more solvated and flexible. These three features, which relate to the more dynamic on-off ligand binding processes associated with nonprocessive action, correlate to experimentally measured differences in processivity of the S. marcescens chitinases. These newly defined hallmarks thus appear to be key dynamic metrics in determining processivity in GH enzymes complementing structural insights.  相似文献   

3.
Ubiquitin-mediated proteolysis of securin and mitotic cyclins is essential for exit from mitosis. The final step in ubiquitination of these and other proteins is catalysed by the anaphase-promoting complex (APC), a multi-subunit ubiquitin-protein ligase (E3). Little is known about the molecular reaction resulting in APC-dependent substrate ubiquitination or the role of individual APC subunits in the reaction. Using a well-defined in vitro system, we show that highly purified APC from Saccharomyces cerevisiae ubiquitinates a model cyclin substrate in a processive manner. Analysis of mutant APC lacking the Doc1/Apc10 subunit (APC(doc1 Delta)) indicates that Doc1 is required for processivity. The specific molecular defect in APC(doc1 Delta) is identified by a large increase in apparent K(M) for the cyclin substrate relative to the wild-type enzyme. This suggests that Doc1 stimulates processivity by limiting substrate dissociation. Addition of recombinant Doc1 to APC(doc1 Delta) fully restores enzyme function. Doc1-related domains are found in mechanistically distinct ubiquitin-ligase enzymes and may generally stimulate ubiquitination by contributing to substrate-enzyme affinity.  相似文献   

4.
The proteasome is the degradation machine at the center of the ubiquitin-proteasome system and controls the concentrations of many proteins in eukaryotes. It is highly processive so that substrates are degraded completely into small peptides, avoiding the formation of potentially toxic fragments. Nonetheless, some proteins are incompletely degraded, indicating the existence of factors that influence proteasomal processivity. We have quantified proteasomal processivity and determined the underlying rates of substrate degradation and release. We find that processivity increases with species complexity over a 5-fold range between yeast and mammalian proteasome, and the effect is due to slower but more persistent degradation by proteasomes from more complex organisms. A sequence stretch that has been implicated in causing incomplete degradation, the glycine-rich region of the NFκB subunit p105, reduces the proteasome's ability to unfold its substrate, and polyglutamine repeats such as found in Huntington's disease reduce the processivity of the proteasome in a length-dependent manner.  相似文献   

5.
The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive [Berdis et al. (1998) Proc. Natl Acad. Sci. USA 95: 2874-2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid.  相似文献   

6.
β-Amylase (EC 3.2.1.2), one of the main protein of the sweet potato, is an exo-working enzyme catalyzing the hydrolysis of α(1,4) glycosidic linkages in polysaccharides and removes successively maltose units from the non-reducing ends. The enzyme belongs to glycoside hydrolase GH14 family and inverts the anomeric configuration of the hydrolysis product. Multiple attack or processivity is an important property of polymer active enzymes and there is still limited information about the processivity of carbohydrate active enzymes. Action pattern and kinetic measurements of sweet potato β-amylase were made on a series of aromatic chromophor group-containing substrates (degree of polymerization DP 3-13) using HPLC method. Measured catalytic efficiencies increased with increasing DP of the substrates. Processive cleavage was observed on all substrates except the shortest pentamer. The mean number of steps without dissociation of enzyme–product complex increases with DP of substrate and reached 3.3 in case of CNPG11 indicating that processivity on longer substrates was more significant. A unique transglycosylation was observed on those substrates, which suffer processive cleavage and the substrates were re-built by the enzyme. Our results are the first presentation of a transglycosylation during an inverting glycosidase catalyzed hydrolysis. The yield of transglycosylation was remarkable high as shown in the change of the CNPG11 quantity. The CNPG11 concentration was doubled (from 0.24 to 0.54 mM) in the early phase of the reaction.  相似文献   

7.
Scott MP  Miller WT 《Biochemistry》2000,39(47):14531-14537
The Src homology 2 (SH2) and Src homology 3 (SH3) domains of Src family kinases are involved in substrate recognition in vivo. Many cellular substrates of Src kinases contain a large number of potential phosphorylation sites, and the SH2 and SH3 domains of Src are known to be required for phosphorylation of these substrates. In principle, Src could phosphorylate these substrates by either a processive mechanism, in which the enzyme remains bound to the peptide substrate during multiple phosphorylation events, or a nonprocessive (distributive) mechanism, where each phosphorylation requires a separate binding interaction between enzyme and substrate. Here we use a synthetic peptide system to demonstrate that Hck, a Src family kinase, can phosphorylate substrates containing an SH2 domain ligand by a processive mechanism. Hck catalyzes the phosphorylation of these sites in a defined order. Furthermore, we show that addition of an SH3 domain to a peptide can enhance its phosphorylation both by activating Hck and by increasing the affinity of the substrate. On the basis of our observations on the role of the SH2 and SH3 domains in substrate recognition, we present a model for substrate targeting in vivo.  相似文献   

8.
Zhou HX 《Biophysical journal》2005,88(3):1608-1615
A physical and mathematical model is presented to explain processivity of proteins on DNA. In this model, a DNA-targeting protein such as a restriction enzyme can diffuse to the DNA surface and nonspecifically bind to it. Once on the DNA surface it will either move along the DNA or equilibrate with the surrounding region. Owing to the nonspecific binding, the search for a specific site on the DNA occurs in a reduced dimensionality, and the protein appears processive when moving from one specific site to another. The simplest version of this nonspecific-binding-facilitated diffusion model is solved and the results quantitatively explain experimentally observed dependence of the processivity ratio on the intervening DNA length between two specific sites.  相似文献   

9.
Knowledge-based protein modeling and substrate docking experiments as well as structural and sequence comparisons were performed to identify potential active-site residues in chitinase, a molting enzyme from the tobacco hornworm, Munduca sexta. We report here the identification of an active-site amino acid residue, W145. Several mutated forms of the gene encoding this protein were generated by site-directed mutagenesis, expressed in a baculovirus-insect cell-line system, and the corresponding mutant proteins were purified and characterized for their catalytic and substrate-binding properties. W145, which is present in the presumptive catalytic site, was selected for mutation to phenylalanine (F) and glycine (G), and the resulting mutant enzymes were characterized to evaluate the mechanistic role of this residue. The wild-type and W145F mutant proteins exhibited similar hydrolytic activities towards a tri-GlcNAc oligosaccharide substrate, but the former was approximately twofold more active towards a polymeric chitin-modified substrate. The W145G mutant protein was inactive towards both substrates, although it still retained its ability to bind chitin. Therefore, W145 is required for optimal catalytic activity but is not essential for binding to chitin. Measurement of kinetic constants of the wild-type and mutant proteins suggests that W145 increases the affinity of the enzyme for the polymeric substrate and also extends the alkaline pH range in which the enzyme is active.  相似文献   

10.
Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(-1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(-2) to Glc(-4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(-2) to Glc(-4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.  相似文献   

11.
The modes of action of three family 18 chitinases (ChiA, ChiB, and ChiC) from Serratia marcescens during the degradation of a water-soluble polymeric substrate, chitosan, were investigated using a combination of viscosity measurements, reducing end assays, and characterization of the size-distribution of the oligomeric products. All three enzymes yielded a fast reduction in molecular weight of the chitosan substrate at a very early stage of hydrolysis, which is typical for endo-acting enzymes. For ChiA and ChiB, this is inconsistent with the previously proposed exo-attack mode of action. The main difference between ChiA, ChiB, and ChiC is the degree of processivity. ChiC is an endo enzyme with no apparent processivity. ChiA and ChiB are processive enzymes in which the substrate remains bound to the active cleft after successful hydrolysis and is moved along for the next hydrolysis to occur. ChiA and ChiB perform on average 9.1 and 3.4 cleavages, respectively, for the formation of each enzyme-substrate complex. ChiA and ChiB have deep, tunnel-like substrate-binding grooves. The demonstration of endo activity shows that substrate binding must involve the temporary restructuring of the loops that make up the roofs of the substrate-binding grooves, similar to what has been proposed for cellobiohydrolase Cel6A. The data suggest that the exo-type of activity observed for ChiA and ChiB during the degradation of solid crystalline chitin is due to the better accessibility of chain ends, rather than intrinsic enzyme properties.  相似文献   

12.
The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low μm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity.  相似文献   

13.
The vitamin K-dependent (VKD) carboxylase binds VKD proteins via their propeptide and converts Glu's to gamma-carboxylated Glu's, or Gla's, in the Gla domain. Multiple carboxylation is required for activity, which could be achieved if the carboxylase is processive. In the only previous study to test for this capability, an indirect assay was used which suggested processivity; however, the efficiency was poor and raised questions regarding how full carboxylation is accomplished. To unequivocally determine if the carboxylase is processive and if it can account for comprehensive carboxylation in vivo, as well as to elucidate the enzyme mechanism, we developed a direct test for processivity. The in vitro carboxylation of a complex containing carboxylase and full-length factor IX (fIX) was challenged with an excess amount of a distinguishable fIX variant. Remarkably, carboxylation of fIX in the complex was completely unaffected by the challenge protein, and comprehensive carboxylation was achieved, showing conclusively that the carboxylase is processive and highly efficient. These studies also showed that carboxylation of individual fIX/carboxylase complexes was nonsynchronous and implicated a driving force for the reaction which requires the carboxylase to distinguish Glu's from Gla's. We found that the Gla domain is tightly associated with the carboxylase during carboxylation, blocking the access of a small peptide substrate (EEL). The studies describe the first analysis of preformed complexes, and the rate for full-length, native fIX in the complex was equivalent to that of the substrate EEL. Thus, intramolecular movement within the Gla domain to reposition new Glu's for catalysis is as rapid as diffusion-limited positioning of a small substrate, and the Gla domain is not sterically constrained by the rest of the fIX molecule during carboxylation. The rate of carboxylation of fIX in the preformed complex was 24-fold higher than for fIX modified by free carboxylase, which supports carboxylase processivity and which indicates that binding and/or release is the rate-limiting step in protein carboxylation. These data indicate a model of tethered processivity, in which the VKD proteins remain bound to the carboxylase throughout the reaction via their propeptide, while the Gla domain undergoes intramolecular movement to reposition new Glu's for catalysis to ultimately achieve comprehensive carboxylation.  相似文献   

14.
The repair of cis-syn cyclobutane pyrimidine dimers (CPDs) can be initiated via the base excision repair (BER) pathway, utilizing pyrimidine dimer-specific DNA glycosylase/lyase enzymes (pdgs). However, prior to incision at lesion sites, these enzymes bind to non-damaged DNAs through charge-charge interactions. Following initial binding to DNA containing multiple lesions, the enzyme incises at most of these sites prior to dissociation. If a subset of these lesions are in close proximity, clustered breaks may be produced that could lead to decreased cell viability or increased mutagenesis. Based on the co-crystal structures of bacteriophage T4-pdg and homology modeling of a related enzyme from Paramecium bursaria Chlorella virus-1, the structure-function basis for the processive incision activity for both enzymes was investigated using site-directed mutagenesis. An assay was developed that quantitatively measured the rates of incision by these enzymes at clustered apurinic/apyrimidinic (AP) sites. Mathematical modeling of random (distributive) versus processive incisions predicted major differences in the rate and extent of the accumulation of singly nicked DNAs between these two mechanisms. Comparisons of these models with biochemical nicking data revealed significant changes in the damage search mechanisms between wild-type pdgs and most of the mutant enzymes. Several conserved arginine residues were shown to be critical for the processivity of the incision activity, without interfering with catalysis at AP sites. Comparable results were measured for incision at clustered CPD sites in plasmid DNAs. These data reveal that pdgs can be rationally engineered to retain full catalytic activity, while dramatically altering mechanisms of target site location.  相似文献   

15.
Preprotein translocase, the membrane transporter for secretory proteins, is a processive enzyme. It comprises the membrane proteins SecYEG(DFYajC) and the peripheral ATPase SecA, which acts as a motor subunit. Translocase subunits form dynamic complexes in the lipid bilayer and build an aqueous conduit through which preprotein substrates are transported at the expense of energy. Preproteins bind to translocase and trigger cycles of ATP binding and hydrolysis that drive a transition of SecA between two distinct conformational states. These changes are transmitted to SecG and lead to inversion of its membrane topology. SecA conformational changes promote directed migration of the polymeric substrate through the translocase, in steps of 20–30 aminoacyl residues. Translocase dissociates from the substrate only after the whole preprotein chain length has been transported to the trans side of the membrane, where it is fully released.  相似文献   

16.
Sun S  Geng L  Shamoo Y 《Proteins》2006,65(1):231-238
In vivo, replicative DNA polymerases are made more processive by their interactions with accessory proteins at the replication fork. Single-stranded DNA binding protein (SSB) is an essential protein that binds tightly and cooperatively to single-stranded DNA during replication to remove adventitious secondary structures and protect the exposed DNA from endogenous nucleases. Using information from high resolution structures and biochemical data, we have engineered a functional chimeric enzyme of the bacteriophage RB69 DNA polymerase and SSB with substantially increased processivity. Fusion of RB69 DNA polymerase with its cognate SSB via a short six amino acid linker increases affinity for primer-template DNA by sixfold and subsequently increases processivity by sevenfold while maintaining fidelity. The crystal structure of this fusion protein was solved by a combination of multiwavelength anomalous diffraction and molecular replacement to 3.2 A resolution and shows that RB69 SSB is positioned proximal to the N-terminal domain of RB69 DNA polymerase near the template strand channel. The structural and biochemical data suggest that SSB interactions with DNA polymerase are transient and flexible, consistent with models of a dynamic replisome during elongation.  相似文献   

17.
Sidorenko VS  Zharkov DO 《Biochemistry》2008,47(34):8970-8976
Many enzymes acting on specific rare lesions in DNA are suggested to search for their targets by facilitated one-dimensional diffusion. We have used a recently developed correlated cleavage assay to investigate whether this mechanism operates for Fpg and OGG1, two structurally unrelated DNA glycosylases that excise an important oxidative lesion, 7,8-dihydro-8-oxoguanine (8-oxoG), from DNA. Similar to a number of other DNA glycosylases or restriction endonucleases, Fpg and OGG1 processively excised 8-oxoG from pairs with cytosine at low salt concentrations, indicating that the lesion search likely proceeds by one-dimensional diffusion. At high salt concentrations, both enzymes switched to a distributive mode of lesion search. Correlated cleavage of abasic site-containing substrates proceeded in the same manner as cleavage of 8-oxoG. Interestingly, both Fpg and especially OGG1 demonstrated higher processivity if the substrate contained 8-oxoG.A pairs, against which these enzyme discriminate. Introduction of a nick into the substrate DNA did not decrease the extent of correlated cleavage, suggesting that the search probably involves hopping between adjacent positions on DNA rather than sliding along DNA. This was further supported by the observation that mutant forms of Fpg (Fpg-F110A and Fpg-F110W) with different sizes of the side chain of the amino acid residue inserted into DNA during scanning were both less processive than the wild-type enzyme. In conclusion, processive cleavage by Fpg and OGG1 does not correlate with their substrate specificity and under nearly physiological salt conditions may be replaced with the distributive mode of action.  相似文献   

18.
《FEBS letters》2014,588(24):4620-4624
Glycoside hydrolases depolymerize polysaccharides. They can subtract single carbohydrate chains from polymer crystals and cleave glycosidic bonds without dissociating from the substrate after each catalytic event. This processivity is thought to conserve energy during polysaccharide degradation. Herein, we compare the processivity of components of the chitinolytic machinery of Serratia marcescens. The two processive chitinases ChiA and ChiB, the ChiB-W97A mutant, and the endochitinase ChiC were analyzed for the extent of degradation of three different chitin substrates. Moreover, enzyme processivity was assessed on the basis of the [(GlcNAc)2]/[GlcNAc] product ratio. The results show that the apparent processivity (Papp) greatly diminishes with the extent of degradation and confirm the hypothesis that Papp is limited by the length of obstacle free path on the substrate.  相似文献   

19.
Phospholipase A2 at the bilayer interface.   总被引:2,自引:0,他引:2  
F Ramirez  M K Jain 《Proteins》1991,9(4):229-239
Interfacial catalysis is a necessary consequence for all enzymes that act on amphipathic substrates with a strong tendency to form aggregates in aqueous dispersions. In such cases the catalytic event occurs at the interface of the aggregated substrate, the overall turnover at the interface is processive, and it is influenced the molecular organization and dynamics of the interface. Such enzymes can access the substrate only at the interface because the concentration of solitary monomers of the substrate in the aqueous phase is very low. Moreover, the microinterface between the bound enzyme and the organized substrate not only facilitates formation of the enzyme-substrate complex, but a longer residence time of the enzyme at the substrate interface also promotes high catalytic processivity. Binding of the enzyme to the substrate interface as an additional step in the overall catalytic turnover permits adaptation of the Michaelis-Menten formalism as a basis to account for the kinetics of interfacial catalysis. As shown for the action of phospholipase A2 on bilayer vesicles, binding equilibrium has two extreme kinetic consequences. During catalysis in the scooting mode the enzyme does not leave the surface of the vesicle to which it is bound. On the other hand, in the hopping mode the absorption and desorption steps are a part of the catalytic turnover. In this minireview we elaborate on the factors that control binding of pig pancreatic phospholipase A2 to the bilayer interface. Binding of PLA2 to the interface occurs through ionic interactions and is further promoted by hydrophobic interactions which probably occur along a face of the enzyme, with a hydrophobic collar and a ring of cationic residues, through which the catalytic site is accessible to substrate molecules in the bilayer. An enzyme molecule binds to the surface occupied by about 35 lipid molecules with an apparent dissociation constant of less than 0.1 pM for the enzyme on anionic vesicles compared to 10 mM on zwitterionic vesicles. Results at hand also show that aggregation or acylation of the protein is not required for the high affinity binding or catalytic interaction at the interface.  相似文献   

20.
Rape M  Reddy SK  Kirschner MW 《Cell》2006,124(1):89-103
The anaphase-promoting complex (APC) coordinates mitosis and G1 by sequentially promoting the degradation of key cell-cycle regulators. Following the degradation of its substrates in G1, the APC catalyzes the autoubiquitination of its E2 UbcH10. This stabilizes cyclin A and allows it to inactivate APC(Cdh1). How the APC establishes this complex temporal sequence of ubiquitinations, referred to as substrate ordering, is not understood. Here we show that substrate ordering depends on the relative processivity of substrate multiubiquitination by the APC. Processive substrates obtain ubiquitin chains in a single APC binding event. The multiubiquitination of distributive substrates requires multiple rounds of APC binding, which render it sensitive to lower APC concentrations, competition by processive substrates, and deubiquitination. Consequently, more processive substrates are preferentially multiubiquitinated in vitro and degraded earlier in vivo. The processivity of multiubiquitination is strongly influenced by the D box within the substrate, suggesting that substrate ordering is established by a mechanism intrinsic to APC and its substrates and similar to kinetic proofreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号