首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Florida scrub is a xeric ecosystem associated with the peninsula's sand ridges, whose intermittent Pliocene–Pleistocene isolation is considered key to scrub endemism. One scrub origin hypothesis posits endemics were sourced by the Pliocene dispersal of arid‐adapted taxa from southwestern North America; a second invokes Pleistocene migration within eastern North America. Only one study to date has explicitly tested these competing hypotheses, supporting an eastern origin for certain scrub angiosperms. For further perspective, we conducted a genetic analysis of an endemic arthropod, the Florida sand cockroach (Arenivaga floridensis), with two aims: (1) to reconstruct the peninsular colonization and residence history of A. floridensis and (2) determine whether its biogeographic profile favors either origin hypothesis. We sequenced the cox2 mitochondrial gene for 237 specimens (65 populations) as well as additional loci (cox1, nuclear H3) for a subset of Florida roaches and congeners. Using Network and Bayesian inference methods, we identified three major lineages whose genetic differentiation and phylogeographical structure correspond with late Pliocene peninsula insularization, indicating Arenivaga was present and broadly distributed in Florida at that time. Stem and crown divergence estimates (6.36 Ma; 2.78 Ma) between A. floridensis and western sister taxa span a period of extensive dispersal by western biota along an arid Gulf Coast corridor. These phylogeographical and phylogenetic results yield a biogeographic profile consistent with the western origin hypothesis. Moreover, age estimates for the roach's peninsular residence complement those of several other endemics, favoring a Pliocene (or earlier) inception of the scrub ecosystem. We argue that eastern versus western hypotheses are not mutually exclusive; rather, a composite history of colonization involving disparate biotas better explains the diverse endemism of Florida scrub.  相似文献   

2.
Galapagos giant tortoises (Chelonoidis spp.) are a group of large, long-lived reptiles that includes 14 species, 11 of which are extant and threatened by human activities and introductions of non-native species. Here, we evaluated the phylogenetic relationships of all extant and two extinct species (Chelonoidis abingdonii from the island of Pinta and Chelonoidis niger from the island of Floreana) using Bayesian and maximum likelihood analysis of complete or nearly complete mitochondrial genomes. We also provide an updated phylogeographic scenario of their colonization of the Galapagos Islands using chrono-phylogenetic and biogeographic approaches. The resulting phylogenetic trees show three major groups of species: one from the southern, central, and western Galapagos Islands; the second from the northwestern islands; and the third group from the northern, central, and eastern Galapagos Islands. The time-calibrated phylogenetic and ancestral area reconstructions generally align with the geologic ages of the islands. The divergence of the Galapagos giant tortoises from their South American ancestor likely occurred in the upper Miocene. Their diversification on the Galapagos adheres to the island progression rule, starting in the Pleistocene with the dispersal of the ancestral form from the two oldest islands (San Cristóbal and Española) to Santa Cruz, Santiago, and Pinta, followed by multiple colonizations from different sources within the archipelago. Our work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galapagos lineages.  相似文献   

3.
Cyrtandra comprises at least 600 species distributed throughout Malesia, where it is known for many local endemics and in Polynesia and Micronesia, where it is present on most island groups, and is among the most successfully dispersing genera of the Pacific. To ascertain the origin of the oceanic Pacific island species of Cyrtandra, we sequenced the internal transcribed spacers of nuclear ribosomal DNA of samples from throughout its geographical range. Because all oceanic Pacific island species form a well-supported clade, these species apparently result from a single initial colonization into the Pacific, possibly by a species from the eastern rim of SE Asia via a NW-to-SE stepping stone migration. Hawaiian species form a monophyletic group, probably as a result of a single colonization. The Pacific island clade of Cyrtandra dispersed across huge distances, in contrast to the apparent localization of the SE Asian clades. Although highly vagile, the Pacific clade is restricted to oceanic islands. Individual species are often endemic to a single island, characteristic of the "supertramp" life form sensu Diamond (1974, Science 184: 803-806). The evolution of fleshy fruit within Cyrtandra provided an adaptation for colonization throughout the oceanic Pacific via bird dispersal from a single common ancestor.  相似文献   

4.
The arcto‐Tertiary relictual flora is comprised of many genera that occur non‐contiguously in the temperate zones of eastern Asia, Europe, eastern North America, and western North America. Within each distributional area, species are typically endemic and may thus be widely separated from closely related species within the other areas. It is widely accepted that this common pattern of distribution resulted from of the fragmentation of a once more‐continuous arcto‐Tertiary forest. The historical biogeographic events leading to the present‐day disjunction have often been investigated using a phylogenetic approach. Limitations to these previous studies have included phylogenetic uncertainty and uncertainty in ancestral range reconstructions. However, the recently described Bayes‐DIVA method handles both types of uncertainty. Thus, we used Bayes‐DIVA analysis to reconstruct the stem lineage distributions for 185 endemic lineages from 23 disjunct genera representing 17 vascular plant families. In particular, we asked whether endemic lineages within each of the four distributional areas more often evolved from (1) widespread ancestors, (2) ancestors dispersed from other areas, or (3) endemic ancestors. We also considered which of these three biogeographic mechanisms may best explain the origins of arcto‐Tertiary disjunct endemics in the neotropics. Our results show that eastern Asian endemics more often evolved from endemic ancestors compared to endemics in Europe and eastern and western North America. Present‐day endemic lineages in the latter areas more often arose from widespread ancestors. Our results also provide anecdotal evidence for the importance of dispersal in the biogeographic origins of arcto‐Tertiary species endemic in the neotropics.  相似文献   

5.
Ronald Sluys 《Hydrobiologia》1995,305(1-3):49-53
Turbellarians do not feature as examples in the present discussions on the theory and method of analytical biogeography. It is argued, however, that turbellarian distributional records form good examples of large-scale biogeographic patterns resulting from continental breakup. Some turbellarian taxa also indicate biogeographic links across the Pacific Ocean, which can be visualized readily by means of track construction. Amphi-pacific organismal distributions form the ingredients of trans-Pacific biogeographic tracks. Such tracks may be explained historically either as the result of dispersal or of vicariance. In the case of the flatworm examples, as well as many other organisms, dispersal explanations are the least satisfactory. However, under a vicariance paradigm the classical pre-drift reconstruction of Pangea cannot adequately explain trans-Pacific tracks. Therefore, alternative paleogeographic models may be invoked as explanatory hypotheses: the lost continent Pacifica, island integration, a new reconstruction of eastern Gondwanaland, an expanding earth. None of these alternative models is fully compatible with all geological and biogeographic data available at present. It is stressed that biogeographic data and theories should not be made subservient to geological theories. Biogeographical data on flatworms may indicate paleogeographical relations which are worthy of examination by geologists.  相似文献   

6.
With information on fossils and extant distribution of diversity/endemism in the mahogany family, we perform a global biogeographic study of Meliaceae using plastid rbcL data for all subfamilies, tribes and nearly all genera. Our study indicates that: (1) Meliaceae are of western Gondwanan origin; (2) dispersal played an important role for the current distribution of mahogany biota; and (3) the direction of dispersal was most likely an "out-of-Africa" scenario with important dispersal routes across Eurasia and between Eurasia and North America provided by Beringia and the North Atlantic land bridge and North America and South America via island chains and/or direct land connections. Populations in North America, Europe, and East Asia were presumably eliminated as tropical climates disappeared from these areas during the Miocene. Extensive Meliaceae fossil findings confirm that the entry of megathermal (frost-intolerant) angiosperms into southern continents from Oligocene to Pliocene must be considered as an important means of establishing pantropical distribution patterns.  相似文献   

7.
In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.  相似文献   

8.
The Lophopidae are found in South America, Africa, Australia, India and Southeast Asia. This distribution appears to be typically Gondwanan, triggered by tectonic events beginning over 100 Ma. However, within the Fulgoromorpha, the lophopids are considered to be relatively recently. In this study, biological, geological and phylogenetic information is evaluated to provide a parsimonious explanation for the distribution of the group and its geographic region of ancestral origin. The Lophopidae can be divided into four monophyletic groups. The ancestors of two groups appear to have originated somewhere along the western Pacific island arc system. Another group appears to have an origin in Southeast Asia. A reliable explanation for the ancestral origin of the fourth group was not possible because it consists of only one genus present in Central and South America. A biogeographic map of the two groups of lophids of the western Pacific island arc is concordant with their phylogeny based on biological and morphological data. Based on this finding, the best explanation for the origin and evolution of the Lophopidae and their current distribution of these lophopids is through vicariance. Similar types of eco-evolutionary events explain radiation and distribution of the Lophopidae, in general.  相似文献   

9.

Background

Putative phytogeographical links between America (especially North America) and the Hawaiian Islands have figured prominently in disagreement and debate about the origin of Pacific floras and the efficacy of long-distance (oversea) plant dispersal, given the obstacles to explaining such major disjunctions by vicariance.

Scope

Review of past efforts, and of progress over the last 20 years, toward understanding relationships of Hawaiian angiosperms allows for a historically informed re-evaluation of the American (New World) contribution to Hawaiian diversity and evolutionary activity of American lineages in an insular setting.

Conclusions

Temperate and boreal North America is a much more important source of Hawaiian flora than suggested by most 20th century authorities on Pacific plant life, such as Fosberg and Skottsberg. Early views of evolution as too slow to account for divergence of highly distinctive endemics within the Hawaiian geological time frame evidently impeded biogeographical understanding, as did lack of appreciation for the importance of rare, often biotically mediated dispersal events and ecological opportunity in island ecosystems. Molecular phylogenetic evidence for North American ancestry of Hawaiian plant radiations, such as the silversword alliance, mints, sanicles, violets, schiedeas and spurges, underlines the potential of long-distance dispersal to shape floras, in accordance with hypotheses championed by Carlquist. Characteristics important to colonization of the islands, such as dispersibility by birds and ancestral hybridization or polyploidy, and ecological opportunities associated with ‘sky islands’ of temperate or boreal climate in the tropical Hawaiian archipelago may have been key to extensive diversification of endemic lineages of North American origin that are among the most species-rich clades of Hawaiian plants. Evident youth of flowering-plant lineages from North America is highly consistent with recent geological evidence for lack of high-elevation settings in the Hawaiian chain immediately prior to formation of the oldest, modern high-elevation island, Kaua‘i.  相似文献   

10.
The timing of the earliest colonization of North America is debatable, but what is not at issue is the point of origin of the early colonists: Humans entered the continent from Beringia and then made their way south along or near the Pacific Coast and/or through a corridor that ran between the Cordilleran and Laurentide ice sheets in western North America. At some point, they abandoned their Arctic‐based tool complex for one more adapted to an entirely different environment. That new techno‐complex is termed “Clovis”; its dispersal allows us to examine, at a fine scale, how colonization processes played out across a vast continent that at the time had, at best, a very small resident population. Clovis has figured prominently in American archeology since the first Clovis points were identified in eastern New Mexico in the 1930s. However, the successful marriage of learning models grounded in evolutionary theory and modern analytical methods that began roughly a decade ago has begun to pay significant dividends in terms of what we know about the rapid spread of human groups across the last sizable landmass to witness human occupation.  相似文献   

11.
The New Zealand wrens (Acanthisittidae) are basal in passerine birds and in New Caledonia, the closest country to New Zealand, Amborella is basal in angiosperms. A review of molecular studies indicates that 29 other locally or regionally endemic clades around the Tasman and Coral Sea basins have cosmopolitan or globally widespread sister groups. Other areas that have local endemics basal to diverse global groups include Borneo, Madagascar/South Africa/Tanzania, southern China–Taiwan–Japan, and different parts of Latin America, especially the Guayana Plateau and western Mexico. Basal clades are widely interpreted as ancestral and their location is generally taken to represent a centre of origin for the group as a whole. In the present study, basal groups are treated simply as small (less speciose) sister groups. The Tasman and western Mexico/Caribbean regions have important biogeographic and tectonic ties with each other and with the central Pacific. Large igneous provinces (Ontong Java, Hikurangi‐Manihiki, and Gorgona Plateaus) formed in the central Pacific in the Cretaceous. Fossil wood is found on the Ontong Java Plateau, and formerly emergent seamounts up to 24 km across occur on Hikurangi Plateau. Many terranes in New Zealand, New Caledonia, New Guinea and western America represent former island arcs (or their products) that formed in the central Pacific and later accreted to the Pacific margins. Long‐term survival of taxa as metapopulations on the ephemeral volcanic islands and atolls of plate margins and fissures may explain the biogeographical connections among the Tasman region, the central Pacific, and the accreted terranes of western America. Branching sequences in cladograms and phylogenetic trees have been interpreted as dispersal events, but instead probably indicate the sequence of differentiation in an already widespread ancestor. Major disjunctions of tens of thousands of kilometres often occur between taxa at consecutive nodes on a tree and dispersal by physical movement is unlikely. The break between the globally basal centres and the rest of the world marks the initial site of differentiation of a widespread ancestor, with subsequent or more or less simultaneous differentiation occurring in other areas. Differentiation of the modern angiosperms, passerines and other groups first took place around the Tasman region, or at least the terranes now accumulated there, and then around other centres, especially Madagascar–South Africa and Mexico–north‐west South America. Angiosperms are now recognized as basal to extant gymnosperms and major tectonic dynamism around the globally basal centres during the Mesozoic, involving terrane accretion, orogeny, and rifting could have been involved with the last important modernization of angiosperms, birds and other groups. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 222–245.  相似文献   

12.
Many tropical reef fishes are divided into Atlantic and East Pacific taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Pacific is an open basin with unstable oceanic circulation. To assess how evolutionary processes are influenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cytochrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d = 5.2-12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Pacific species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax = 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Pacific Panama, Clipperton Island, and the Galapagos Islands. No concordance between genetic structure and biogeographic provinces was found for O. steincdachneri. We attribute the phylogeographic pattern in O. atlanticus to dispersal during the reorganization of Atlantic circulation patterns that accompanied the shoaling of the Isthmus of Panama. The low degree of structure in the eastern Pacific is probably due to unstable circulation and linkage to the larger Pacific Ocean basin. The contrast in genetic signatures between Atlantic and eastern Pacific blennies demonstrates how differences in geology and oceanography have influenced evolutionary radiations within each region.  相似文献   

13.
Aralia sect. Aralia (Araliaceae) consists of approximately eight species disjunctly distributed in Asia and North America. Phylogenetic and biogeographic analyses were conducted using sequences of the internal transcribed spacer regions of the nuclear ribosomal DNA. Aralia racemosa from eastern North America was sister to A. californica from western North America. Aralia cordata from eastern Asia did not form a species-pair relationship with the eastern North American A. racemosa. The two subspecies of A. racemosa formed a monophyletic group. Biogeographic analyses showed a close area relationship between eastern North America and western North America. The Himalayas were cladistically basal and eastern Asia was placed between the Himalayas and North America. The biogeographic analysis supported the origin of the eastern Asian and eastern North American disjunct pattern in Aralia sect. Aralia via the Bering land bridges. Comparisons with results of phylogenetic analyses of other genera suggested that (1) the floristic connection between eastern North America and western North America may be stronger than previously thought; and (2) the biogeographic patterns in the Northern Hemisphere are complex. Furthermore, a lack of correlation between sequence divergence values and phylogenetic positions was observed, suggesting the importance of a phylogenetic framework in biogeographic analyses.  相似文献   

14.
The concepts of centers of biota origin and centers of biota accumulation are usually regarded as mutually exclusive. In this paper, they are analyzed within the framework of a unified concept of centers of biota redistribution. Such a center is a biogeographic unit that has three developmental stages: accumulation, diversification, and dispersal. At the accumulation stage, the taxonomic capacity of the corresponding biogeographic district drastically increases and its species richness becomes higher owing to in-migration of species from other regions. At the diversification stage, the species richness continues to increase owing to speciation, and a unified succession system develops. At the dispersal stage, the biotic boundaries of the region act as efficient barriers to species invasion, and the species of the redistribution center gain an advantage over the species of adjacent regions when colonizing new habitats. In the Neogene, the main shallow-water centers of marine fauna redistribution were located in the Indo-Malayan triangle, the western Atlantic, and the northern Pacific. The role of redistribution centers in deep-ocean areas belonged to the Antarctic and the western Pacific. The possibility of using an ecosystem approach to the study of redistribution centers is discussed.  相似文献   

15.
Towards a panbiogeography of the seas   总被引:3,自引:0,他引:3  
A contrast is drawn between the concept of speciation favoured in the Darwin–Wallace biogeographic paradigm (founder dispersal from a centre of origin) and in panbiogeography (vicariance or allopatry). Ordinary ecological dispersal is distinguished from founder dispersal. A survey of recent literature indicates that ideas on many aspects of marine biology are converging on a panbiogeographic view. Panbiogeographic conclusions supported in recent work include the following observations: fossils give minimum ages for groups and most taxa are considerably older than their earliest known fossil; Pacific/Atlantic divergence calibrations based on the rise of the Isthmus of Panama at 3 Ma are flawed; for these two reasons most molecular clock calibrations for marine groups are also flawed; the means of dispersal of taxa do not correlate with their actual distributions; populations of marine species may be closed systems because of self‐recruitment; most marine taxa show at least some degree of vicariant differentiation and vicariance is surprisingly common among what were previously assumed to be uniform, widespread taxa; mangrove and seagrass biogeography and migration patterns in marine taxa are best explained by vicariance; the Indian Ocean and the Pacific Ocean represent major biogeographic regions and diversity in the Indo‐Australian Archipelago is related to Indian Ocean/Pacific Ocean vicariance; distribution in the Pacific is not the result of founder dispersal; distribution in the south‐west Pacific is accounted for by accretion tectonics which bring about distribution by accumulation and juxtaposition of communities; tectonic uplift and subsidence can directly affect vertical distribution of marine communities; substantial parallels exist between the biogeography of terrestrial and marine taxa; biogeographically and geologically composite areas are tractable using panbiogeographic analysis; metapopulation models are more realistic than the mainland/island dispersal models used in the equilibrium theory of island biogeography; and regional biogeography is a major determinant of local community composition. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 675–723.  相似文献   

16.
Hawaiian biogeography and the islands' freshwater fish fauna   总被引:3,自引:0,他引:3  
Aim This paper describes known patterns in the distributions and relationships of Hawaiian freshwater fishes, and compares these patterns with those exhibited by Hawaii's terrestrial biota. Location The study is based in Hawaii, and seeks patterns across the tropical and subtropical Indo‐west Pacific. Methods The study is based primarily on literature analysis. Results The Hawaiian freshwater fish fauna comprises five species of goby in five different genera (Gobiidae). Four species are Hawaiian endemics, the fifth shared with islands in the western tropical Pacific Ocean. All genera are represented widely across the Indo‐west Pacific. All five species are present on all of the major Hawaiian islands. All five species are amphidromous – their larval and early juvenile life being spent in the sea. Although there has been some local phyletic evolution to produce Hawaiian endemics, there has been no local radiation to produce single‐island endemics across the archipelago. Nor is there evidence for genetic structuring among populations in the various islands. Main conclusions In this regard, the freshwater fish fauna of Hawaii differs from the well‐known patterns of local evolution and radiation in Hawaiian Island terrestrial taxa. Amphidromy probably explains the biogeographical idiosyncrasies of the fish fauna – dispersal through the sea initially brought the fish species to Hawaii, and gene flow among populations, across the archipelago, has hitherto inhibited the evolution of local island endemics, apparently even retarding genetic structuring on individual islands.  相似文献   

17.
Plant biogeographers have long argued whether plant disjunctions result from vicariance or dispersal. One of the classic patterns of plant disjunction involves New World amphitropical disjuncts, as exemplified by Tiquilia subg. Tiquilia (Boraginaceae). Subgenus Tiquilia forms a heterogeneous group of ~20 species that is amphitropically distributed in the deserts of North and South America, with four taxa endemic to the Galápagos Islands. The current study reconstructs the biogeographic history of subg. Tiquilia in order to explore the origins of New World amphitropical disjunction and of Galápagos endemism. A strongly supported phylogeny of the subgenus is estimated using sequence data from matK, ndhF, rps16, ITS, and waxy. Biogeographic analyses using combined and individual marker data sets reveal a complex history of long-distance dispersal in subg. Tiquilia. Biogeographic reconstructions imply a North American origin of the subgenus and its three major lineages and require at least four long-distance dispersal events to explain its current distribution. The South American taxa of subg. Tiquilia result from three independent and nonsimultaneous colonization events, while the monophyly and continental origins of the Galápagos endemics are unresolved. This study contributes to a growing body of evidence that intercontinental dispersal has been more common than previously realized.  相似文献   

18.
Fungi in the basidiomycete species complex Heterobasidion annosum are significant root-rot pathogens of conifers throughout the northern hemisphere. We utilize a multilocus phylogenetic approach to examine hypotheses regarding the evolution and divergence of two Heterobasidion taxa associated with pines: the Eurasian H. annosum sensu stricto and the North American H. annosum P intersterility group (ISG). Using DNA sequence information from portions of two nuclear and two mitochondrial loci, we infer phylogenetic relationships via parsimony, Bayesian and median-joining network analysis. Analysis of isolates representative of the entire known geographic range of the two taxa results in monophyletic sister Eurasian and North American lineages, with North America further subdivided into eastern and western clades. Genetically anomalous isolates from the Italian presidential estate of Castelporziano are always part of a North American clade and group with eastern North America, upholding the hypothesis of recent, anthropogenically mediated dispersal. P ISG isolates from Mexico have phylogenetic affinity with both eastern and western North America. Results for an insertion in the mitochondrial rDNA suggest this molecule was obtained from the Heterobasidion S ISG, a taxon sympatric with the P ISG in western North America. These data are compatible with an eastern Eurasian origin of the species, followed by dispersal of two sister taxa into western Eurasia and into eastern North America over a Beringean land bridge, a pattern echoed in the phylogeography of other conifer-associated basidiomycetes.  相似文献   

19.
New Caledonia has generally been considered a continental island, the biota of which largely dates back to Gondwanan times owing to its geological origin and the presence of phylogenetic relicts. This view is contradicted by geological evidence indicating long Palaeocene and Eocene submersions and by recent biogeographic and phylogenetic studies, with molecular or geophysical dating placing the biota no older than the Oligocene. Phylogenetic relicts do not provide conclusive information in this respect, as their presence cannot be explained by simple hypotheses but requires assumption of many ad hoc extinction events. The implication of this new scenario is that all the New Caledonian biota colonized the island since 37 Ma Local richness can be explained by local radiation and adaptation after colonization but also by many dispersal events, often repeated within the same groups of organisms. Local microendemism is another remarkable feature of the biota. It seems to be related to recent speciation mediated by climate, orography, soil type and perhaps unbalanced biotic interactions created by colonization disharmonies. New Caledonia must be considered as a very old Darwinian island, a concept that offers many more fascinating opportunities of study.  相似文献   

20.
Previous hypotheses of phylogenetic relationships among Nearctic toads (Bufonidae) and their congeners suggest contradictory biogeographic histories. These hypotheses argue that the Nearctic Bufo are: (1) a polyphyletic assemblage resulting from multiple colonizations from Africa; (2) a paraphyletic assemblage resulting from a single colonization event from South America with subsequent dispersal into Eurasia; or (3) a monophyletic group derived from the Neotropics. We obtained approximately 2.5 kb of mitochondrial DNA sequence data for the 12S, 16S, and intervening valine tRNA gene from 82 individuals representing 56 species and used parametric bootstrapping to test hypotheses of the biogeographic history of the Nearctic Bufo. We find that the Nearctic species of Bufo are monophyletic and nested within a large clade of New World Bufo to the exclusion of Eurasian and African taxa. This suggests that Nearctic Bufo result from a single colonization from the Neotropics. More generally, we demonstrate the utility of parametric bootstrapping for testing alternative biogeographic hypotheses. Through parametric bootstrapping, we refute several previously published biogeographic hypotheses regarding Bufo. These previous studies may have been influenced by homoplasy in osteological characters. Given the Neotropical origin for Nearctic Bufo, we examine current distributional patterns to assess whether the Nearctic-Neotropical boundary is a broad transition zone or a narrow boundary. We also survey fossil and paleogeographic evidence to examine potential Tertiary and Cretaceous dispersal routes, including the Paleocene Isthmian Link, the Antillean and Aves Ridges, and the current Central American Land Bridge, that may have allowed colonization of the Nearctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号