首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To increase resource gain, many herbivores pace their migration with the flush of nutritious plant green‐up that progresses across the landscape (termed “green‐wave surfing”). Despite concerns about the effects of climate change on migratory species and the critical role of plant phenology in mediating the ability of ungulates to surf, little is known about how drought shapes the green wave and influences the foraging benefits of migration. With a 19 year dataset on drought and plant phenology across 99 unique migratory routes of mule deer (Odocoileus hemionus) in western Wyoming, United States, we show that drought shortened the duration of spring green‐up by approximately twofold (2.5 weeks) and resulted in less sequential green‐up along migratory routes. We investigated the possibility that some routes were buffered from the effects of drought (i.e., routes that maintained long green‐up duration irrespective of drought intensity). We found no evidence of drought‐buffered routes. Instead, routes with the longest green‐up in non‐drought years also were the most affected by drought. Despite phenological changes along the migratory route, mule deer closely followed drought‐altered green waves during migration. Migrating deer did not experience a trophic mismatch with the green wave during drought. Instead, the shorter window of green‐up caused by drought reduced the opportunity to accumulate forage resources during rapid spring migrations. Our work highlights the synchronization of phenological events as an important mechanism by which climate change can negatively affect migratory species by reducing the temporal availability of key food resources. For migratory herbivores, climate change poses a new and growing threat by altering resource phenology and diminishing the foraging benefit of migration.  相似文献   

2.
Each spring, migratory herbivores around the world track or ‘surf’ green waves of newly emergent vegetation to distant summer or wet‐season ranges. This foraging tactic may help explain the great abundance of migratory herbivores on many seasonal landscapes. However, the underlying fitness benefits of this life‐history strategy remain poorly understood. A fundamental prediction of the green‐wave hypothesis is that migratory herbivores obtain fitness benefits from surfing waves of newly emergent vegetation more closely than their resident counterparts. Here we evaluate whether this behavior increases body‐fat levels – a critically important correlate of reproduction and survival for most ungulates – in elk Cervus elaphus of the Greater Yellowstone Ecosystem. Using satellite imagery and GPS tracking data, we found evidence that migrants (n = 23) indeed surfed the green wave, occupying sites 12.7 days closer to peak green‐up than residents (n = 16). Importantly, individual variation in surfing may help account for up to 6 kg of variation in autumn body‐fat levels. Our findings point to a pathway for anthropogenic changes to the green wave (e.g. climate change) or migrants’ ability to surf it (e.g. development) to impact migratory populations. To explore this possibility, we evaluated potential population‐level consequences of constrained surfing with a heuristic model. If green‐wave surfing deteriorates by 5–15 days from observed, our model predicts up to a 20% decrease in pregnancy rates, a 2.5% decrease in population growth, and a 30% decrease in abundance over 50 years. By linking green‐wave surfing to fitness and illustrating potential effects on population growth, our study provides new insights into the evolution of migratory behavior and the prospects for the persistence of migratory ungulate populations in a changing world.  相似文献   

3.
From fine‐scale foraging to broad‐scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long‐distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2–28 times more strongly than tracking spring green‐up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.  相似文献   

4.
The forage maturation hypothesis (FMH) assumes that herbivores cope with the trade‐off between digestibility and biomass in forage by selecting vegetation at intermediate growth. The green wave hypothesis (GWH) extends the FMH to suggest how spatiotemporal heterogeneity in plant quality shapes migratory movements of herbivores. Growing empirical support for these hypotheses mainly comes from studies in vast landscapes with large‐scale habitat heterogeneity. It is unclear, however, to what extent ungulates surf green waves in human‐altered landscapes with small‐scale heterogeneity in terms of land use and topography. We used plant phenological proxies derived from Sentinel 2 satellite data to analyze the habitat selection of 93 collared red deer (Cervus elaphus) in montane and alpine habitats. Using a step selection analysis, we investigated how plant phenology, that is, the instantaneous rate of green‐up (IRG) and normalized difference vegetation index (NDVI), and a set of variables describing topography and human presence influenced red deer resource selection in open habitats. We learned that red deer selected areas with high biomass at green‐up and avoided habitats with possible exposure to human activity. Additionally, landscape structure and topography strongly influenced spatial behavior of red deer. We further compared cumulative access to high‐quality forage across migrant strategies and found migrants gained better access than residents. Many migratory individuals surfed the green wave, and their surfing behavior, however, became less pronounced with decreasing distance to settlements. Within the constraints of topography and human land use, red deer track spring green‐up on a fine spatiotemporal scale and follow the green wave across landscapes in migration movements. Thus, they benefit from high‐quality forage even in human‐dominated landscapes with small‐scale heterogeneity and vegetation emerging in a heterogenic, dynamic mosaic.  相似文献   

5.
During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen‐rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open‐top chambers. We measured the effect of 1.0–1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop‐over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen‐rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1–2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.  相似文献   

6.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

7.
In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate‐driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site‐specific phenology. Thus, adaptations for efficient long‐distance flights might be also related to conditions at destination areas. For an obligatory long‐distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green‐up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green‐up and thus short optimal arrival periods. We suggest that the speed of spring green‐up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.  相似文献   

8.
East Asian migratory waterfowl have greatly declined since the 1950s, especially the populations that winter in China. Conservation is severely hampered by the lack of primary information about migration patterns and stopover sites. This study utilizes satellite tracking techniques and advanced spatial analyses to investigate spring migration of the greater white‐fronted goose (Anser albifrons) and tundra bean goose (Anser serrirostris) wintering along the Yangtze River Floodplain. Based on 24 tracks obtained from 21 individuals during the spring of 2015 and 2016, we found that the Northeast China Plain is far‐out the most intensively used stopover site during migration, with geese staying for over 1 month. This region has also been intensely developed for agriculture, suggesting a causal link to the decline in East Asian waterfowl wintering in China. The protection of waterbodies used as roosting area, especially those surrounded by intensive foraging land, is critical for waterfowl survival. Over 90% of the core area used during spring migration is not protected. We suggest that future ground surveys should target these areas to confirm their relevance for migratory waterfowl at the population level, and core roosting area at critical spring‐staging sites should be integrated in the network of protected areas along the flyway. Moreover, the potential bird–human conflict in core stopover area needs to be further studied. Our study illustrates how satellite tracking combined with spatial analyses can provide crucial insights necessary to improve the conservation of declining Migratory species.  相似文献   

9.
The most common framework under which ungulate migration is studied predicts that it is driven by spatio–temporal variation in plant phenology, yet other hypotheses may explain differences within and between species. To disentangle more complex patterns than those based on single species/ single populations, we quantified migration variability using two sympatric ungulate species differing in their foraging strategy, mating system and physiological constraints due to body size. We related observed variation to a set of hypotheses. We used GPS‐collar data from 537 individuals in 10 roe Capreolus capreolus and 12 red deer Cervus elaphus populations spanning environmental gradients across Europe to assess variation in migration propensity, distance and timing. Using time‐to‐event models, we explored how the probability of migration varied in relation to sex, landscape (e.g. topography, forest cover) and temporally‐varying environmental factors (e.g. plant green‐up, snow cover). Migration propensity varied across study areas. Red deer were, on average, three times more migratory than roe deer (56% versus 18%). This relationship was mainly driven by red deer males which were twice as migratory as females (82% versus 38%). The probability of roe deer migration was similar between sexes. Roe deer (both sexes) migrated earliest in spring. While territorial male roe deer migrated last in autumn, male and female red deer migrated around the same time in autumn, likely due to their polygynous mating system. Plant productivity determined the onset of spring migration in both species, but if plant productivity on winter ranges was sufficiently high, roe deer were less likely to leave. In autumn, migration coincided with reduced plant productivity for both species. This relationship was stronger for red deer. Our results confirm that ungulate migration is influenced by plant phenology, but in a novel way, that these effects appear to be modulated by species‐specific traits, especially mating strategies.  相似文献   

10.
A broad range of migration strategies exist in avian species, and different strategies can occur in different populations of the same species. For the breeding Osprey Pandion haliaetus populations of the Mediterranean, sporadic observations of ringed birds collected in the past suggested variations in migratory and wintering behaviour. We used GPS tracking data from 41 individuals from Corsica, the Balearic Islands and continental Italy to perform the first detailed analysis of the migratory and wintering strategies of these Osprey populations. Ospreys showed heterogeneous migratory behaviour, with 73% of the individuals migrating and the remaining 27% staying all year round at breeding sites. For migratory individuals, an extremely short duration of migration (5.2 ± 2.6 days) was recorded. Mediterranean Ospreys were able to perform long non‐stop flights over the open sea, sometimes overnight. They also performed pre‐ and post‐migratory trips to secondary sites, before or after crossing the sea during both autumn and spring migration. Ospreys spent the winter at temperate latitudes and showed high plasticity in habitat selection, using marine bays, coastal lagoons/marshland and inland freshwater sites along the coasts of different countries of the Mediterranean basin. Movements and home‐range areas were restricted during the wintering season. The short duration of trips and high levels of variability in migratory routes and wintering grounds revealed high behavioural plasticity among individuals, probably promoted by the relatively low seasonal variability in ecological conditions throughout the year in the Mediterranean region, and weak competition for non‐breeding sites. We stress the importance of considering the diversity in migration strategies and the particular ecology of these vulnerable populations, especially in relation to proactive management measures for the species at the scale of the Mediterranean region.  相似文献   

11.
《Mammalian Biology》2014,79(6):369-375
Migratory ungulates exhibit recurring movements, often along traditional routes between seasonal ranges each spring and autumn, which allow them to track resources as they become available on the landscape. We examined the relationship between spring migration of mule deer (Odocoileus hemionus) and forage quality, as indexed by spatiotemporal patterns of fecal nitrogen and remotely sensed greenness of vegetation (Normalized Difference Vegetation Index; NDVI) in spring 2010 in the Piceance Basin of northwestern Colorado, USA. NDVI increased throughout spring, and was affected primarily by snow depth when snow was present, and temperature when snow was absent. Fecal nitrogen was lowest when deer were on winter range before migration, increased rapidly to an asymptote during migration, and remained relatively high when deer reached summer range. Values of fecal nitrogen corresponded with increasing NDVI during migration. Spring migration for mule deer provided a way for these large mammals to increase access to a high-quality diet, which was evident in patterns of NDVI and fecal nitrogen. Moreover, these deer “jumped” rather than “surfed” the green wave by arriving on summer range well before peak productivity of forage occurred. This rapid migration may aid in securing resources and seclusion from others on summer range in preparation for parturition, and to minimize detrimental factors such as predation, and malnutrition during migration.  相似文献   

12.
Abstract The forage-maturation hypothesis (FMH) states that herbivores migrate along a phenological gradient of plant development in order to maximize energy intake. Despite strong support for the FMH, the actual relationship between plant phenology and ungulate movement has remained enigmatic. We linked plant phenology (MODIS-normalized difference vegetation index [NDVI] data) and space use of 167 migratory and 78 resident red deer (Cervus elaphus), using a space-time-time matrix of "springness," defined as the instantaneous rate of green-up. Consistent with the FMH, migrants experienced substantially greater access to early plant phenology than did residents. Deer were also more likely to migrate in areas where migration led to greater gains in springness. Rather than "surfing the green wave" during migration, migratory red deer moved rapidly from the winter to the summer range, thereby "jumping the green wave." However, migrants and, to a lesser degree, residents did track phenological green-up through parts of the growing season by making smaller-scale adjustments in habitat use. Despite pronounced differences in their life histories, we found only marginal differences between male and female red deer in this study. Those differences that we did detect pointed toward additional constraints on female space-use tactics, such as those posed by calving and caring for dependent offspring. We conclude that whereas in some systems migration itself is a way to surf the green wave, in others it may simply be a means to reconnect with phenological spring at the summer range. In the light of ubiquitous anthropogenic environmental change, understanding the relationship between the green wave and ungulate space use has important consequences for the management and conservation of migratory ungulates and the phenomenon of migration itself.  相似文献   

13.
Long‐distance migration is a behavior that is exhibited by many animal groups. The evolution of novel migration routes can play an important role in range expansions, ecological interactions, and speciation. New migration routes may evolve in response to selection in favor of reducing distance between breeding and wintering areas, or avoiding navigational barriers. Many migratory changes are likely to evolve gradually and are therefore difficult to study. Here, we attempt to connect breeding and wintering populations of myrtle warblers (Setophaga coronata coronata) to better understand the possible evolution of distinct migration routes within this species. Myrtle warblers, unlike most other warblers with breeding ranges primarily in eastern North America, have two disjunct overwintering concentrations—one in the southeastern USA and one along the Pacific Coast—and presumably distinct routes to‐and‐from these locations. We studied both myrtle and Audubon's warblers (S. c. auduboni) captured during their spring migration along the Pacific Coast, south of the narrow region where these two taxa hybridize. Using stable hydrogen isotopes and biometric data, we show that those myrtle warblers wintering along the southern Pacific Coast of North America are likely to breed at high latitudes in Alaska and the Yukon rather than in Alberta or further east. Our interpretation is that the evolution of this wintering range and migration route along the Pacific Coast may have facilitated the breeding expansion of myrtle warblers into northwestern North America. Moreover, these data suggest that there may be a migratory divide within genetically similar populations of myrtle warblers.  相似文献   

14.
Large herbivores gain nutritional benefits from following the sequential flush of newly emergent, high‐quality forage along environmental gradients in the landscape, termed green wave surfing. Which landscape characteristics underlie the environmental gradient causing the green wave and to what extent landscape characteristics alone explain individual variation in nutritional benefits remain unresolved questions. Here, we combine GPS data from 346 red deer (Cervus elaphus) from four partially migratory populations in Norway with the satellite‐derived normalized difference vegetation index (NDVI), an index of plant phenology. We quantify whether migratory deer had access to higher quality forage than resident deer, how landscape characteristics within summer home ranges affected nutritional benefits, and whether differences in landscape characteristics could explain differences in nutritional gain between migratory and resident deer. We found that migratory red deer gained access to higher quality forage than resident deer but that this difference persisted even after controlling for landscape characteristics within the summer home ranges. There was a positive effect of elevation on access to high‐quality forage, but only for migratory deer. We discuss how the landscape an ungulate inhabits may determine its responses to plant phenology and also highlight how individual behavior may influence nutritional gain beyond the effect of landscape.  相似文献   

15.
According to migration theory and several empirical studies, long‐distance migrants are more time‐limited during spring migration and should therefore migrate faster in spring than in autumn. Competition for the best breeding sites is supposed to be the main driver, but timing of migration is often also influenced by environmental factors such as food availability and wind conditions. Using GPS tags, we tracked 65 greater white‐fronted geese Anser albifrons migrating between western Europe and the Russian Arctic during spring and autumn migration over six different years. Contrary to theory, our birds took considerably longer for spring migration (83 days) than autumn migration (42 days). This difference in duration was mainly determined by time spent at stopovers. Timing and space use during migration suggest that the birds were using different strategies in the two seasons: In spring they spread out in a wide front to acquire extra energy stores in many successive stopover sites (to fuel capital breeding), which is in accordance with previous results that white‐fronted geese follow the green wave of spring growth. In autumn they filled up their stores close to the breeding grounds and waited for supportive wind conditions to quickly move to their wintering grounds. Selection for supportive winds was stronger in autumn, when general wind conditions were less favourable than in spring, leading to similar flight speeds in the two seasons. In combination with less stopover time in autumn this led to faster autumn than spring migration. White‐fronted geese thus differ from theory that spring migration is faster than autumn migration. We expect our findings of different decision rules between the two migratory seasons to apply more generally, in particular in large birds in which capital breeding is common, and in birds that meet other environmental conditions along their migration route in autumn than in spring.  相似文献   

16.
Migratory connectivity describes to which degree different breeding populations have distinct (non‐overlapping) non‐breeding sites. Uncovering the level of migratory connectivity is crucial for effective conservation actions and for understanding of the evolution of local adaptations and migratory routes. Here we investigate migration patterns in a passerine bird, the great reed warbler Acrocephalus arundinaceus, over its wide Western Palearctic breeding range using geolocators from Spain, Sweden, Czech Republic, Bulgaria and Turkey. We found moderate migratory connectivity: a highly significant spatial structure in the connections between breeding and sub‐Saharan non‐breeding grounds, but at the same time a partial overlap between individual populations, particularly along the Gulf of Guinea where the majority of birds from the Spanish, Swedish and Czech populations spent their non‐breeding period. The post‐breeding migration routes were similar in direction and rather parallel for the five populations. Birds from Turkey showed the most distinctive migratory routes and sub‐Saharan non‐breeding range, with a post‐breeding migration to east Africa and, together with birds from Bulgaria, a previously unknown pre‐breeding migration over the Arabian Peninsula indicating counter‐clockwise loop migration. The distances between breeding and sub‐Saharan non‐breeding sites, as well as between first and final sub‐Saharan non‐breeding sites, differed among populations. However, the total speed of migration did not differ significantly between populations; neither during post‐breeding migration in autumn, nor pre‐breeding migration in spring. There was also no significant relationship between the total speed of migration and distance between breeding and non‐breeding sites (neither post‐ nor pre‐breeding) and, surprisingly, the total speed of migration generally did not differ significantly between post‐breeding and pre‐breeding migration. Future challenges include understanding whether non‐breeding environmental conditions may have influenced the differences in migratory patterns that we observed between populations, and to which extent non‐breeding habitat fluctuations and loss may affect population sizes of migrants.  相似文献   

17.
Identifying an organism's migratory strategies and routes has important implications for conservation. For most species of European ducks, information on the general course of migration, revealed by ringing recoveries, is available, whereas tracking data on migratory movements are limited to the largest species. In the present paper, we report the results of a tracking study on 29 Eurasian Teals, the smallest European duck, captured during the wintering period at three Italian sites. The departure date of spring migration was determined for 21 individuals, and for 15 the entire spring migratory route was reconstructed. Most ducks departed from wintering grounds between mid‐February and March following straight and direct routes along the Black Sea‐Mediterranean flyway. The breeding sites, usually reached by May, were spread from central to north‐Eastern Europe to east of the Urals. The migratory speed was slow (approximately 36 km/day on average) because most birds stopped for several weeks at stopover sites, mainly in south‐eastern Europe, especially at the very beginning of migration. The active flight migration segments were covered at much higher speeds, up to 872 km/day. Stopover duration tended to be shorter when birds were closer to their breeding site. These results, based on the largest satellite tracking effort for this species, revealed for the first time the main features of the migratory strategies of individual Teals wintering in Europe, such as the migration timing and speed and stopover localization and duration.  相似文献   

18.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

19.
Insects account for a large portion of Earth's biodiversity and are key players for ecosystems, notably as pollinators. While insect migration is suspected to represent a natural phenomenon of major importance, remarkably little is known about it, except for a few flagship species. The reason for this situation is mainly due to technical limitations in the study of insect movement. Here, we propose using metabarcoding of pollen carried by insects as a method for tracking their migrations. We developed a flexible and simple protocol allowing efficient multiplexing and not requiring DNA extraction, one of the most time‐consuming part of metabarcoding protocols, and apply this method to the study of the long‐distance migration of the butterfly Vanessa cardui, an emerging model for insect migration. We collected 47 butterfly samples along the Mediterranean coast of Spain in spring and performed metabarcoding of pollen collected from their bodies to test for potential arrivals from the African continent. In total, we detected 157 plant species from 23 orders, most of which (82.8%) were insect‐pollinated. Taxa present in Africa–Arabia represented 73.2% of our data set, and 19.1% were endemic to this region, strongly supporting the hypothesis that migratory butterflies colonize southern Europe from Africa in spring. Moreover, our data suggest that a northwards trans‐Saharan migration in spring is plausible for early arrivals (February) into Europe, as shown by the presence of Saharan floristic elements. Our results demonstrate the possibility of regular insect‐mediated transcontinental pollination, with potential implications for ecosystem functioning, agriculture and plant phylogeography.  相似文献   

20.
Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate ‘circadian clock’ genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans‐Saharan migratory bird species, we investigated the relationships between species‐level genetic variation at two candidate genes, Clock and Adcyap1, and species’ traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in ‘circadian clock’ genotype frequencies, Clock allele size increased with breeding latitude across species. However, early‐ and late‐migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long‐distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long‐distance migratory species, likely resulting from the time constraints imposed by late spring migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号