首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shaded coffee agroecosystems traditionally have few pest problems potentially due to higher abundance and diversity of predators of herbivores. However, with coffee intensification (e.g., shade tree removal or pruning), some pest problems increase. For example, coffee leaf miner outbreaks have been linked to more intensive management and increased use of agrochemicals. Parasitic wasps control the coffee leaf miner, but few studies have examined the role of predators, such as ants, that are abundant and diverse in coffee plantations. Here, we examine linkages between arboreal ant communities and coffee leaf miner incidence in a coffee plantation in Mexico. We examined relationships between incidence and severity of leaf miner attack and: (1) variation in canopy cover, tree density, tree diversity, and relative abundance of Inga spp. shade trees; (2) presence of Azteca instabilis, an arboreal canopy dominant ant; and (3) the number of arboreal twig‐nesting ant species and nests in coffee plants. Differences in vegetation characteristics in study plots did not correlate with leaf miner damage perhaps because environmental factors act on pest populations at a larger spatial scale. Further, presence of A. instabilis did not influence presence or severity of leaf miner damage. The proportion of leaves with leaf miner damage was significantly lower where abundance of twig‐nesting ants was higher but not where twig‐nesting ant richness was higher. These results indicate that abundance of twig‐nesting ants in shaded coffee plantations may contribute to maintenance of low leaf miner populations and that ants provide important ecosystem services in coffee agroecosystems.  相似文献   

2.
Loss, fragmentation and decreasing quality of habitats have been proposed as major threats to biodiversity world‐wide, but relatively little is known about biodiversity responses to multiple pressures, particularly at very large spatial scales. We evaluated the relative contributions of four landscape variables (habitat cover, diversity, fragmentation and productivity) in determining different components of avian diversity across Europe. We sampled breeding birds in multiple 1‐km2 landscapes, from high forest cover to intensive agricultural land, in eight countries during 2001?2002. We predicted that the total diversity would peak at intermediate levels of forest cover and fragmentation, and respond positively to increasing habitat diversity and productivity; forest and open‐habitat specialists would show threshold conditions along gradients of forest cover and fragmentation, and respond positively to increasing habitat diversity and productivity; resident species would be more strongly impacted by forest cover and fragmentation than migratory species; and generalists and urban species would show weak responses. Measures of total diversity did not peak at intermediate levels of forest cover or fragmentation. Rarefaction‐standardized species richness decreased marginally and linearly with increasing forest cover and increased non‐linearly with productivity, whereas all measures increased linearly with increasing fragmentation and landscape diversity. Forest and open‐habitat specialists responded approximately linearly to forest cover and also weakly to habitat diversity, fragmentation and productivity. Generalists and urban species responded weakly to the landscape variables, but some groups responded non‐linearly to productivity and marginally to habitat diversity. Resident species were not consistently more sensitive than migratory species to any of the landscape variables. These findings are relevant to landscapes with relatively long histories of human land‐use, and they highlight that habitat loss, fragmentation and habitat‐type diversity must all be considered in land‐use planning and landscape modeling of avian communities.  相似文献   

3.
Ants are arthropods providing crucial ecosystem services such as soil structuring, nutrient cycling, seed dispersal and pest predation. Thus, their abundance and diversity need to be considered in approaches to improve sustainability of land use such as Mediterranean viticulture. In our study, we tested whether (1) inter-row vegetation and the absence of tillage increase the species richness and/or functional diversity of ants in vineyards and (2) ground cover vegetation drives ant species composition. We included 23 Mediterranean organic vineyards in our analyses and distinguished three types of inter-row management: all inter-rows tilled, half of the inter-rows tilled, and all inter-rows are untilled and covered by vegetation. The occurrence of ant species was analysed in six pitfall traps per vineyard. Around each trap, the floristic composition of inter-row vegetation was analysed in 2 × 2 m² plots. We found that inter-row tillage significantly affected ant species richness, being higher in partially than in fully tilled vineyards whereas untilled vineyards were not different from the other tillage types. Grass cover and the perennial/annual rate were positively correlated with ant species richness. Ant functional diversity and the frequency of most predatory ants were not correlated neither with plant functional groups nor with tillage type. In conclusion, ant communities benefit from inter-row vegetation and/or absence of soil disturbance but partial inter-row tillage of vineyards may be tolerated and even benefit several species. In particular, grasses and perennial plant species favour ants in our system and need to be considered in inter-row sowing.  相似文献   

4.
In human‐modified landscapes, important ecological functions such as predation are negatively affected by anthropogenic activities, including the use of pesticides and habitat degradation. Predation of insect pests is an indicator of healthy ecosystem functioning, which provides important ecosystem services, especially for agricultural systems. In this study, we compare predation attempts from arthropods, mammals, and birds on artificial caterpillars in the understory, between three tropical agricultural land‐use types: oil palm plantations, rubber tree plantations, and fruit orchards. We collected a range of local and landscape‐scale data including undergrowth vegetation structure; elevation; proximity to forest; and canopy cover in order to understand how environmental variables can affect predation. In all three land‐use types, our results showed that arthropods and mammals were important predators of artificial caterpillars and there was little predation by birds. We did not find any effect of the environmental variables on predation. There was an interactive effect between land‐use type and predator type. Predation by mammals was considerably higher in fruit orchards and rubber tree than in oil palm plantations, likely due to their ability to support higher abundances of insectivorous mammals. In order to maintain or enhance natural pest control in these common tropical agricultural land‐use types, management practices that benefit insectivorous animals should be introduced, such as the reduction of pesticides, improvement of understory vegetation, and local and landscape heterogeneity.  相似文献   

5.
Anthropogenic disturbances often affect the abundance and diversity of ants (Hymenoptera: Formicidae) but relatively few studies have explored the implications of such changes on the ecosystem services mediated by these insects. Here, we evaluated how the transformation of Cerrado savanna habitats into crop plantations affects the abundance, diversity, and the predatory activity of ants. A survey of the ant faunas foraging above‐ and belowground was performed in six crop and six non‐crop (i.e., native vegetation) sites. Above‐ and belowground rates of ant predation were estimated at these same sites using mealworms, Tenebrio molitor L. (Coleoptera: Tenebrionidae), as baits, simulating crop herbivores. Belowground predation rates were significantly greater in the non‐crop sites, despite the lack of difference in overall abundance and species richness of ants foraging belowground between the crop vs. non‐crop sites. In contrast, we did not detect any significant difference in aboveground predation rates between crop vs. non‐crop sites even though there were significantly more species of ants foraging aboveground in the non‐crop sites. Army ants (subfamily Dorylinae) were the main predatory species belowground, and their abundance was significantly greater in non‐crop sites. In contrast, the main predators aboveground were omnivore ants of the genera Pheidole and Solenopsis, which had similar abundances in the crop and non‐crop sites. Overall, our results indicate that transformation of native Cerrado habitats into crop plantations reduces the abundance of some important predatory species, notably those that forage belowground, and this may negatively affect the potential for ants to provide pest control services in agroecosystems.  相似文献   

6.
Morphological defense traits of plants such as trichomes potentially compromise biological control in agroecosystems because they may hinder predation by natural enemies. To investigate whether plant trichomes hinder red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), as biological control agents in soybean, field and greenhouse experiments were conducted in which we manipulated fire ant density in plots of three soybean isolines varying in trichome density. Resulting treatment effects on the abundance of herbivores, other natural enemies, plant herbivory, and yield were assessed. Trichomes did not inhibit fire ants from foraging on plants in the field or in the greenhouse, and fire ant predation of herbivores in the field was actually greater on pubescent plants relative to glabrous plants. Consequently, fire ants more strongly reduced plant damage by herbivores on pubescent plants. This effect, however, did not translate into greater yield from pubescent plants at high fire ant densities. Intraguild predation by fire ants, in contrast, was weak, inconsistent, and did not vary with trichome density. Rather than hindering fire ant predation, therefore, soybean trichomes instead increased fire ant predation of herbivores resulting in enhanced tritrophic effects of fire ants on pubescent plants. This effect was likely the result of a functional response by fire ants to the greater abundance of caterpillar prey on pubescent plants. Given the ubiquity of lepidopteran herbivores and the functional response to prey shown by many generalist arthropod predators, a positive indirect effect of trichomes on predation by natural enemies might be more far more common than is currently appreciated.  相似文献   

7.
Intraguild predation, which is common for generalist predators, is a specific form of omnivory that may suppress the biological control of a pest. The dietary flexibility of a given organism depends on the choice of the C3 (banana crop) and the C4 (weeds) pathways they use and on the trophic level on which they feed. Understanding the conditions in which intraguild predation decreases biological control is a major issue in agroecosystems. We tested whether the contribution of different primary producer pathways in diets of generalist predators mediates the level of intraguild predation. We studied 10 agroecosystems in which banana plants (C3 metabolism) were diversely associated with weeds (C4 metabolism). Diversity in litter macrofauna was relatively low, with a mean between three and eight species per trap. Measurement of stable isotopes showed a significant decrease in the δ15N values of generalist predators when the C4 pathway contributed more than the C3 pathway to their diet. We rejected hypotheses that an increase in the abundance of prey and that a decrease in prey's δ15N values occur when the C4 pathway contributes more than the C3 pathway to their diet. The results are consistent with the diet modification hypothesis, that is, intraguild predation is lower when the C4 (weeds) pathway is preferred to the C3 pathway. Our results suggest that when the C4 pathway of weeds is more exploited by herbivores (or detritivores), generalist predators tend to consume these herbivores and thus neglect the intraguild prey. The diverse C4 plant community probably supports a diverse herbivore community that provides alternative prey. Our results provide evidence that increasing plant diversity in agroecosystems should decrease intraguild predation of generalist predators and should therefore improve pest regulation. In an applied perspective, plant diversity could be increased by establishing a more diverse cover‐crop community.  相似文献   

8.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

9.
There is growing need to develop models of spatial patterns in animal abundance, yet comparatively few examples of such models exist. This is especially true in situations where the abundance of one species may inhibit that of another, such as the intensively‐farmed landscape of the Prairie Pothole Region (PPR) of the central United States, where waterfowl production is largely constrained by mesocarnivore nest predation. We used a hierarchical Bayesian approach to relate the distribution of various land‐cover types to the relative abundances of four mesocarnivores in the PPR: coyote Canis latrans, raccoon Procyon lotor, red fox Vulpes vulpes, and striped skunk Mephitis mephitis. We developed models for each species at multiple spatial resolutions (41.4 km2, 10.4 km2, and 2.6 km2) to address different ecological and management‐related questions. Model results for each species were similar irrespective of resolution. We found that the amount of row‐crop agriculture was nearly ubiquitous in our best models, exhibiting a positive relationship with relative abundance for each species. The amount of native grassland land‐cover was positively associated with coyote and raccoon relative abundance, but generally absent from models for red fox and skunk. Red fox and skunk were positively associated with each other, suggesting potential niche overlap. We found no evidence that coyote abundance limited that of other mesocarnivore species, as might be expected under a hypothesis of mesopredator release. The relationships between relative abundance and land‐cover types were similar across spatial resolutions. Our results indicated that mesocarnivores in the PPR are most likely to occur in portions of the landscape with large amounts of agricultural land‐cover. Further, our results indicated that track‐survey data can be used in a hierarchical framework to gain inferences regarding spatial patterns in animal relative abundance.  相似文献   

10.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices.  相似文献   

11.
Agroecosystems cover more than one quarter of the global land area (ca. 50 million km2) as highly simplified (e.g. pasturelands) or more complex systems (e.g. polycultures and agroforestry systems) with the capacity to support higher biodiversity. Increasingly more information has been published about primates in agroecosystems but a general synthesis of the diversity of agroecosystems that primates use or which primate taxa are able to persist in these anthropogenic components of the landscapes is still lacking. Because of the continued extensive transformation of primate habitat into human‐modified landscapes, it is important to explore the extent to which agroecosystems are used by primates. In this article, we reviewed published information on the use of agroecosystems by primates in habitat countries and also discuss the potential costs and benefits to human and nonhuman primates of primate use of agroecosystems. The review showed that 57 primate taxa from four regions: Mesoamerica, South America, Sub‐Saharan Africa (including Madagascar), and South East Asia, used 38 types of agroecosystems as temporary or permanent habitats. Fifty‐one percent of the taxa recorded in agroecosystems were classified as least concern in the IUCN Red List, but the rest were classified as endangered (20%), vulnerable (18%), near threatened (9%), or critically endangered (2%). The large proportion of threatened primates in agroecosystems suggests that agroecosystems may play an important role in landscape approaches to primate conservation. We conclude by discussing the value of agroecosystems for primate conservation at a broad scale and highlight priorities for future research. Am. J. Primatol. 74:696‐711, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Conservation of uncultivated habitats can increase the potential for ecosystem services in agroecosystems, but these lands are also susceptible to wildfires in the arid western United States. In Napa Valley, California, abundant rodent pests and an interest in integrated pest management have led wine producers to use nest boxes to attract Barn Owls (Tyto furcata) to winegrape vineyards. The viability of this practice as a method to control rodent pests depends heavily on the amount of hunting effort that Barn Owls expend in vineyards, which is known to be influenced by the amount of uncultivated land cover types surrounding the nest box. Wildfires burned nearly 60,000 ha of mainly urban and uncultivated lands surrounding Napa Valley in 2017, altering Barn Owl habitats. We compared GPS tracking data from 32 Barn Owls nesting in 24 individual nest boxes before and after the fires to analyze their hunting habitat selection. Owls with burned areas available to them after the fires had home ranges that shifted toward the fires, but selection was not strongly associated with burned areas. Though there was some spatial use of burned areas, selection of land cover types was similar for birds before and after the fires and in burned and unburned areas. The strongest selection was for areas closest to the nest box, and most recorded locations were in grassland, though selection indicated that owls used land cover types in proportion to their availability. Overall, habitat selection was resilient to changes caused by wildfires. These results are important for farmers who use nest boxes as a means of rodent control, which may be affected after dramatic disturbance events, especially as wildfires increase in the western United States.  相似文献   

13.
Higher trophic level interactions are key mediators of ecosystem functioning in tropical forests. A rich body of theory has been developed to predict the effects of plant diversity on communities at higher trophic levels and the mechanisms underlying such effects. The 'enemies hypothesis’ states that predators exert more effective top–down control of herbivorous insects with increasing plant diversity. Support for this hypothesis has been found in temperate forests and agroecosystems, but remains understudied in tropical forests. We compared incidence of attacks of different natural enemies using artificial caterpillars in a tropical forest landscape and investigated the role of plant community structure (i.e. species richness, composition and density), and the role of forest fragmentation (i.e. patch size, edge distance and canopy openness) on predation intensity. Plant community effects were tested with respect to three vegetation strata: trees, saplings and herbs. Observed predation was substantially due to ants. Predation rates increased with plant species richness for trees and herbs. Density of saplings, herb cover and herb species composition were important factors for predation. No significant patterns were found for fragmentation parameters, suggesting that forest fragmentation has not altered predation intensity. We conclude that in tropical forests, top–down control of herbivorous insects in the understory vegetation is affected by a combination of plant diversity, plant species composition and structural features of the plant community.  相似文献   

14.
  1. Ongoing intensification and fragmentation of European agricultural landscapes dramatically reduce biodiversity and associated functions. Enhancing perennial noncrop areas holds great potential to support ecosystem services such as ant‐mediated pest control.
  2. To study the potential of newly established grassland strips to enhance ant diversity and associated functions, we used hand collection data and predation experiments to investigate differences in (a) ant community composition and (b) biocontrol‐related functional traits, and (c) natural pest control across habitats in cereal fields, old grasslands, and new grassland transects of three years of age.
  3. Ant species diversity was similar between new and old grasslands, but significantly higher in new grasslands than in surrounding cereal fields. Contrary, ant community composition of new grasslands was more similar to cereal fields and distinct from the species pool of old grasslands. The functional trait space covered by the ant communities showed the same distribution between old and new grasslands. Pest control did not differ significantly between habitat types and therefore could not be linked to the prevalence of functional ant traits related to biocontrol services in new grasslands.
  4. Our findings not only show trends of convergence between old and new grasslands, but also indicate that enhancing ant diversity through new grasslands takes longer than three years to provide comparable biodiversity and functionality.
  5. Synthesis and applications: Newly established grasslands can increase ant species richness and abundance and provide a consistent amount of biocontrol services in agroecosystems. However, three years after their establishment, new grasslands were still dominated by common agrobiont ant species and lacked habitat specialists present in old grasslands, which require a constant supply of food resources and long colony establishment times. New grasslands represent a promising measure for enhancing agricultural landscapes but must be preserved in the longer term to promote biodiversity and resilience of associated ecosystem services.
  相似文献   

15.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

16.
Agricultural systems around the world are faced with the challenge of providing for the demands of a growing human population. To meet this demand, agricultural systems have intensified to produce more crops per unit area at the expense of greater inputs. Agricultural intensification, while yielding more crops, generally has detrimental impacts on biodiversity. However, intensified agricultural systems often have fewer pests than more “environmentally-friendly” systems, which is believed to be primarily due to extensive pesticide use on intensive farms. In turn, to be competitive, less-intensive agricultural systems must rely on biological control of pests. Biological pest control is a complex ecosystem service that is generally positively associated with biodiversity of natural enemy guilds. Yet, we still have a limited understanding of the relationships between biodiversity and biological control in agroecosystems, and the mechanisms underlying these relationships. Here, we review the effects of agricultural intensification on the diversity of natural enemy communities attacking arthropod pests and weeds. We next discuss how biodiversity of these communities impacts pest control, and the mechanisms underlying these effects. We focus in particular on novel conceptual issues such as relationships between richness, evenness, abundance, and pest control. Moreover, we discuss novel experimental approaches that can be used to explore the relationships between biodiversity and biological control in agroecosystems. In particular, we highlight new experimental frontiers regarding evenness, realistic manipulations of biodiversity, and functional and genetic diversity. Management shifts that aim to conserve diversity while suppressing both insect and weed pests will help growers to face future challenges. Moreover, a greater understanding of the interactions between diversity components, and the mechanisms underlying biodiversity effects, would improve efforts to strengthen biological control in agroecosystems.  相似文献   

17.
Seed predation is an important ecological process that affects the abundance, diversity and distribution of plant species, and it is known to be influenced by defaunation and forest fragmentation. Most studies on seed predation in human‐modified landscapes do not take into account the different spatial scales in which this process operates. In this study, we evaluated how variables at three distinct spatial scales affected the seed predation of a palm that provides a keystone resource to the frugivore community, the queen palm Syagrus romanzoffiana. Thirteen landscapes that vary in forest cover, number of fragments and patch sizes were sampled in the Brazilian Atlantic forest. We also evaluated the contribution of the three main groups of seed predators: squirrels, terrestrial rodents and invertebrates. Our results indicate that seed predation is more affected by fragment and local variables than by landscape influences. In addition, the size of the fragment, its shape and the distance from the nearest forest edge were the main predictors of the proportion of predated seeds. Moreover, the two main seed predators (squirrels and invertebrates) responded to the same fragment and local variables. Because most of the Atlantic forest consists of small fragments, we expect that the seed predation of this keystone palm should be high in most of its distribution, with potential consequences for the frugivore community.  相似文献   

18.
The enemy‐free space hypothesis (EFSH) contends that generalist predators select for dietary specialization in insect herbivores. At a community level, the EFSH predicts that dietary specialization reduces predation risk, and this pattern has been found in several studies addressing the impact of individual predator taxa or guilds. However, predation at a community level is also subject to combinatorial effects of multiple‐predator types, raising the question of how so‐called multiple‐predator effects relate to dietary specialization in insect herbivores. Here, we test the EFSH with a field experiment quantifying ant predation risk to insect herbivores (caterpillars) with and without the combined predation effects of birds. Assessing a community of 20 caterpillar species, we use model selection in a phylogenetic comparative framework to identify the caterpillar traits that best predict the risk of ant predation. A caterpillar species' abundance, dietary specialization, and behavioral defenses were important predictors of its ant predation risk. Abundant caterpillar species had increased risk of ant predation irrespective of bird predation. Caterpillar species with broad diet breadth and behavioral responsiveness to attack had reduced ant predation risk, but these ant effects only occurred when birds also had access to the caterpillar community. These findings suggest that ant predation of caterpillar species is density‐ or frequency‐dependent, that ants and birds may impose countervailing selection on dietary specialization within the same herbivore community, and that contingent effects of multiple predators may generate behaviorally mediated life‐history trade‐offs associated with herbivore diet breadth.  相似文献   

19.
流域尺度土地利用与土壤类型空间分布的相关性研究   总被引:20,自引:2,他引:20  
陈利顶  张淑荣  傅伯杰  彭鸿嘉 《生态学报》2003,23(12):2497-2505
随着人类活动日益加强,土地利用变化及其驱动力研究已经成为国际地理学界研究的热点。但目前更多的工作侧重于研究人为因子,如人口增长、政策变化等因子对土地利用变化的影响,其实土地利用在宏观尺度上的变化一定程度上取决于自然环境背景,因此研究土地利用变化的自然环境背景特征对于进一步探讨土地利用变化的自然驱动力具有重要意义。土壤类型的空间分布在一定程度将影响土地利用的空间分布格局和变化过程。本文利用遥感、地理信息系统,通过选取景观格局指标,以于桥水库流域为例,研究了土地利用与土壤类型空间分布之间的相互关系。结果表明:(1)受人类活动干扰较弱的土地利用类型,如有林地、稀疏林地、灌木林地、其他林地和草地,主要分布在淋溶褐土、褐土性土以及棕壤地区;而与人类活动密切的土地利用类型,如山区旱耕地、丘陵区水田、丘陵区旱耕地和平原区旱耕地主要分布在淋溶褐土、褐土性土和潮土地区;(2)同类地区土地利用的多样性指数要比土壤的低。并且土地利用和土壤类型多样性均表现出明显的地形梯度效应,从中低山区、低山丘陵区、丘陵平原区到山间盆地区,土壤多样性指数从小到大有规律地变化。而土地利用类型多样性变化较为复杂,反映出人类活动对土地利用格局的影响较强,而对土壤类型的影响相对较小;(3)随着平均斑块面积的增加,流域多样性指数将呈下降趋势。土地利用多样性指数与流域总面积之间的相关性较差,但土壤多样性指数与流域总面积表现出的相关性较好;(4)土地利用类型与土壤类型之间,平均斑块面积上没有明显的相关关系,但在多样性指数之间存在着较好的相关性。土壤类型丰富多样的地区,土地利用的多样性指数也相对较高。  相似文献   

20.
Ant predation and soil moisture have direct and interactive effects on the abundance and community structure of mycophagous flies Here, we replicated an experiment across three climatically different habitat types to describe how these small-scale processes (microclimate and predation) are affected by macroclimatic variability at a larger spatial scale (among habitats) Each week for eight weeks during the summer of 1993, 18 Agaricus bisporus mushrooms were placed on dry, moist, or wet potting soil, within predator access or predator exclusion treatments cups, at six sites in the piedmont of South Carolina, USA Two sites were moist hemlock ravines and four sites were dry ridgetops Mushrooms and soil were collected after one week and fly metamorphs were counted and sorted by species We described the effects of ant predation, soil moisture, site and week on the frequency of host use, metamorph abundance, and Simpson's diversity All three measures were affected by macroclimatic differences among sites and across weeks At wet sites and during rainy weeks, more mushrooms were used, more metamorphs emerged, and the communities were more diverse than at dry sites or during dry periods The small-scale effect of soil moisture was strongly affected by large-scale macroclimatic conditions In dry ridgetop sites and in dry weeks, abundance and diversity increased with increasing soil moisture In moist sites or dunng rainy weeks, however, soil moisture was unimportant and had no effect on abundance or community structure Predation was unaffected by large-scale differences in climate, but was affected by small-scale differences in soil moisture, becoming more intense as soil moisture increased This research demonstrates that the effect of climate on predation is a scale-dependent phenomenon, and that microclimatic effects are mediated by climatic conditions at larger spatial scales We relate these findings to hierarchical theory and hypotheses concerning the relative effects of tolerances, competition, and predation under different levels of environmental stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号