首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate‐change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats – from short‐lived phytoplankton to long‐lived corals – in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate‐change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate‐change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate‐change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate‐change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide‐ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming.  相似文献   

2.
Urban environments impose novel selection pressures with varying impacts across species and life history stages. The post‐fledging stage for migratory passerines, defined as the period of time from when hatch‐year birds fledge until their first migration, is a poorly understood component of annual productivity that potentially limits population growth. We studied two migratory passerines with positive and negative population responses to urbanization, respectively: gray catbird Dumetella carolinensis and wood thrush Hylocichla mustelina. Our goals were to estimate post‐fledging survival rates for urban bird populations and determine which features of the urban landscape impact mortality risk during the post‐fledging stage. From 2012–2014, we tracked 127 fledglings (60 gray catbirds and 67 wood thrushes). Over 55 d after fledging, cumulative survival of gray catbirds (0.32 [95% CI: 0.22–0.47]) was approximately half that of wood thrushes (0.63 [95% CI: 0.52–0.75]). Thus, survival rates during the post‐fledging stage, taken in isolation, do not explain differential trajectories of gray catbird and wood thrush populations in urban environments. Most mortality (86%) for both species was due to predation. However, after reaching independence from parental care, 6 birds (9.4% of mortalities) died of anthropogenic causes (e.g. building, car strikes). Crossing roads significantly increased mortality risk, but increasing daily movement distance decreased mortality risk. Our results raise the question of whether anthropogenic sources of mortality are compensatory or additive to natural mortality; we emphasize the need to monitor fledgling survival beyond the parental‐dependence stage in order to fully understand the impacts of anthropogenic hazards on juvenile birds.  相似文献   

3.
The generally positive relationship between the number of sites a species occupies and its average abundance within those sites provides an important link between population processes occurring at different spatial scales. Although such abundance–occupancy relationships (AORs) have been documented across a very wide range of taxa and in many different environments, little is known of such patterns in Earth's largest ecosystem, the deep sea. Wood falls – derived from natural or anthropogenic inputs of wood into the oceans – constitute an important deep‐sea habitat, habouring their own unique communities ultimately entirely dependent on the wood for chemical energy. In this study we take advantage of the unique features of an experimental wood fall deployment to examine AORs for the first time in deep‐sea invertebrates. The study design combines advantages of both experimental (tractability, control of key environmental parameters) and observational (natural colonisation by taxonomically diverse communities) studies. We show that the interspecific AOR is strongly positive across the 48 species occurring over 32 wood fall communities. The precise form of the AOR is mediated by both species‐level life history (body size) and by the colonisation stage at which communities were harvested, but not by environmental energy (wood fall size). Temporal dynamics within species are also generally consistent with positive intraspecific AORs. This support for positive AORs in the deep sea is an important extension of a macroecological generality into a new environment offering considerable potential for further testing and developing mechanistic macroecological theories.  相似文献   

4.
Understanding what traits determine the extinction risk of species has been a long-standing challenge. Natural populations increasingly experience reductions in habitat and population size concurrent with increasing novel environmental variation owing to anthropogenic disturbance and climate change. Recent studies show that a species risk of decline towards extinction is often non-random across species with different life histories. We propose that species with life histories in which all stage-specific vital rates are more evenly important to population growth rate may be less likely to decline towards extinction under these pressures. To test our prediction, we modelled declines in population growth rates under simulated stochastic disturbance to the vital rates of 105 species taken from the literature. Populations with more equally important vital rates, determined using elasticity analysis, declined more slowly across a gradient of increasing simulated environmental variation. Furthermore, higher evenness of elasticity was significantly correlated with a reduced chance of listing as Threatened on the International Union for Conservation of Nature Red List. The relative importance of life-history traits of diverse species can help us infer how natural assemblages will be affected by novel anthropogenic and climatic disturbances.  相似文献   

5.
Cancer is a disease of multicellularity; it originates when cells become dysregulated due to mutations and grow out of control, invading other tissues and provoking discomfort, disability, and eventually death. Human life expectancy has greatly increased in the last two centuries, and consequently so has the incidence of cancer. However, how cancer patterns in humans compare to those of other species remains largely unknown. In this review, we search for clues about cancer and its evolutionary underpinnings across the tree of life. We discuss data from a wide range of species, drawing comparisons with humans when adequate, and interpret our findings from an evolutionary perspective. We conclude that certain cancers are uniquely common in humans, such as lung, prostate, and testicular cancer; while others are common across many species. Lymphomas appear in almost every animal analysed, including in young animals, which may be related to pathogens imposing selection on the immune system. Cancers unique to humans may be due to our modern environment or may be evolutionary accidents: random events in the evolution of our species. Finally, we find that cancer‐resistant animals such as whales and mole‐rats have evolved cellular mechanisms that help them avoid neoplasia, and we argue that there are multiple natural routes to cancer resistance.  相似文献   

6.
Urbanisation is one of the most significant threats to biodiversity, due to the rapid and large‐scale environmental alterations it imposes on the natural landscape. It is, therefore, imperative that we understand the consequences of and mechanisms by which, species can respond to it. In recent years, research has shown that plasticity of the gut microbiome may be an important mechanism by which animals can adapt to environmental change, yet empirical evidence of this in wild non‐model species remains sparse. Using an empirical replicated study system, we show that city life alters the gut microbiome and stable isotope profiling of a wild native non‐model species – the eastern water dragon (Intellagama lesueurii) in Queensland, Australia. City dragons exhibit a more diverse gut microbiome than their native habitat counterparts and show gut microbial signatures of a high fat and plant rich diet. Additionally, we also show that city dragons have elevated levels of the Nitrogen‐15 isotope in their blood suggesting that a city diet, which incorporates novel anthropogenic food sources, may also be richer in protein. These results highlight the role that gut microbial plasticity plays in an animals' response to human‐altered landscapes.  相似文献   

7.
Darwin's naturalization hypothesis predicts that invasive species should perform better in their novel range in the absence of close relatives in the native flora due to reduced competition. Evidence from recent taxonomic and phylogenetic‐based studies, however, is equivocal. We test Darwin's naturalization hypothesis at two different spatial scales using a fossil‐dated molecular phylogenetic tree of the British native and alien flora (ca. 1600 species) and extensive, fine‐scale survey data from the 1998 Countryside Survey. At both landscape and local scales, invasive species were neither significantly more nor less related to the native flora than their non‐invasive alien counterparts. Species invasiveness was instead correlated with higher nitrogen and moisture preference, but not other life history traits such as life‐form and height. We argue that invasive species spread in Britain is hence more likely determined by changes in land use and other anthropogenic factors, rather than evolutionary history. Synthesis. The transition from non‐invasive to invasive is not related to phylogenetic distinctiveness to the native community, but instead to their environmental preferences. Therefore, combating biological invasions in the Britain and other industrialized countries need entirely different strategies than in more natural environments.  相似文献   

8.
Within Europe, mountain ecosystems are generally less invaded by exotic plant species than are lowland areas. This pattern is commonly attributed to climatic harshness, which limits invasive species presence, and higher propagule pressure and rates of disturbance in lowlands, which favours dissemination. However, the extent to which anthropogenic and natural disturbances contribute to invasive species presence in mountain and lowland environments remains unclear. We conducted field observations in a lowland and an upland region in France and measured environmental variables, estimated the natural and anthropogenic disturbance of plots invaded by Fallopia spp. and compared them to non-invaded plots. Based on generalised linear mixed models, the predictors of Fallopia spp. presence in the upland area only included anthropogenic elements such as the presence of a road or trail and frequentation by humans, whereas both anthropogenic parameters and natural components (light penetration, slope, presence of a road and of a watercourse) were retained as predictors for the lowland region. We calculated the odds of Fallopia spp. presence for the increase of one unit of each predictor. We conclude that the spread of Fallopia spp. in upland areas was mainly linked to human activity whereas dissemination of the species occurred both through humans and in natural ways in lowland areas, and this may be due to a more recent colonisation in the mountains. We therefore advise stakeholders to undertake actions in mountain areas to specifically limit the dissemination of exotic species by humans and to monitor areas of high invasion risk by exotic species, such as areas neighbouring trails and roads highly frequented by humans.  相似文献   

9.
Mammals display considerable geographical variation in life history traits. To understand how climatic factors might influence this variation, we analysed the relationship between life history traits – adult body size, litter size, number of litters per year, gestation length, neonate body mass, weaning age and age at sexual maturity – and several environmental variables quantifying the seasonality and predictability of temperature and precipitation across the distribution range of five terrestrial mammal groups. Environmental factors correlated strongly with each other; therefore, we used principal components analysis to obtain orthogonal climatic predictors that could be used in multivariate models. We found that in bats, primates and even‐toed ungulates adult body size tends to be larger in species inhabiting cold, dry, seasonal environments, whereas in carnivores and rodents a smaller body size is characteristic of warm, dry environments, suggesting that low food availability might limit adult size. Species inhabiting cold, dry, seasonal habitats have fewer, larger litters and shorter gestation periods; however, annual fecundity in these species is not higher, implying that the large litter size of mammals living at high latitudes is probably a consequence of time constraints imposed by strong seasonality. On the other hand, the number of litters per year and annual fecundity were greater in species inhabiting environments with higher seasonality in precipitation. Lastly, we found little evidence for specific effects of environmental variability. Our results highlight the complex effects of environmental factors in the evolution of life history traits in mammals. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 719–736.  相似文献   

10.
In natural environments, predation risk varies over time. The risk allocation hypothesis predicts that prey is expected to adjust key anti‐predator behaviours such as vigilance to temporal variation in risk. We tested the predictions of the risk allocation hypothesis in a natural environment where both a species‐rich natural predator community and human hunters are abundant and where the differences in seasonal and circadian activity between natural and anthropogenic predators provided a unique opportunity to quantify the contributions of different predator classes to anti‐predator behaviour. Whereas natural predators were expected to show similar levels of activity throughout the seasons, hunter activity was high during the daytime during a clearly defined hunting season. According to the risk allocation hypothesis, vigilance should then be higher during the hunting season and during daytime hours than during the non‐hunting season and night‐time hours. Roe deer (Capreolus capreolus) on the edge of Bia?owie?a Primeval Forest in Eastern Poland displayed vigilance behaviour consistent with these predictions. The behavioural response of roe deer to temporarily varying predation risks emphasises the behavioural plasticity of this species and suggests that future studies of anti‐predator behaviour need to incorporate circadian variation in predation pressure as well as risk gradients of both natural and anthropogenic predators.  相似文献   

11.
Theories to explain the success of alien species often assume that they are inherently different from native species. Although there is an increasing body of evidence showing that alien plants tend to dominate in highly human‐modified environments, the underlying reasons why widespread natives might differ in their habitat distribution have rarely been addressed. We used species distribution models to quantify the dominant environmental axes shaping the habitat of 95 widespread native and alien herbaceous species in a highly modified grassland‐dominated landscape in New Zealand. For each species, support vector machines were used to determine 1) the environmental variables that most strongly determined a species’ distribution; 2) the affinity towards a particular position along environmental axes; and 3) tolerance to environmental variation. These three measures were compared among native perennials (n = 31), alien perennials (30) and alien annuals (34). Independent of their origin, species’ distributions were defined by similar environmental variables. Nevertheless, native and alien species occupied different regions of the dominant environmental axes. Perennial natives occupied regions associated with lower human disturbance, while perennial aliens were associated with habitats that had been modified by vegetation clearance, pasture development and livestock grazing. Annual aliens differed from perennials and were associated with both semi‐natural and more intensively managed vegetation. No evidence was found that aliens had broader environmental tolerances than natives that might facilitate invasion into a wider range of environments. Thus, widespread native and alien species differ in the degree to which environmental factors shape their distribution as a result of anthropogenic perturbations to which they respond differently as well as the introduction of functional groups that are capable of exploiting novel environments.  相似文献   

12.
Understanding the processes that influence range expansions during climate warming is paramount for predicting population extirpations and preparing for the arrival of non‐native species. While climate warming occurs over a background of variation due to cyclical processes and irregular events, the temporal structure of the thermal environment is largely ignored when forecasting the dynamics of non‐native species. Ecological theory predicts that high levels of temporal autocorrelation in the environment – relatedness between conditions occurring in close temporal proximity – will favor populations that would otherwise have an average negative growth rate by increasing the duration of favorable environmental periods. Here, we invoke such theory to explain the success of biological invasions and evaluate the hypothesis that sustained periods of high environmental temperature can act synergistically with increases in mean temperature to favor the establishment of non‐native species. We conduct a 60‐day field mesocosm experiment to measure the population dynamics of the non‐native cladoceran zooplankter Daphnia lumholtzi and a native congener Daphnia pulex in ambient temperature environments (control), warmed with recurrent periods of high environmental temperatures (uncorrelated‐warmed), or warmed with sustained periods of high environmental temperatures (autocorrelated‐warmed), such that both warmed treatments exhibited the same mean temperature but exhibited different temporal structures of their thermal environments. Maximum D. lumholtzi densities in the warmed‐autocorrelated treatment were threefold and eightfold higher relative to warmed‐uncorrelated and control treatments, respectively. Yet, D. lumholtzi performed poorly across all experimental treatments relative to D. pulex and were undetectable by the end of the experiment. Using mathematical models, we show that this increase in performance can occur alongside increasing temporal autocorrelation and should occur over a broad range of warming scenarios. These results provide both empirical and theoretical evidence that the temporal structure of the environment can influence the performance of species undergoing range expansions due to climate warming.  相似文献   

13.
Anthropogenic habitat fragmentation of species that live in naturally patchy metapopulations such as mountaintops or sky islands experiences two levels of patchiness. Effects of such multilevel patchiness on species have rarely been examined. Metapopulation theory suggests that patchy habitats could have varied impacts on persistence, dependent on differential migration. It is not known whether montane endemic species, evolutionarily adapted to natural patchiness, are able to disperse between anthropogenic fragments at similar spatial scales as natural patches. We investigated historic and contemporary gene flow between natural and anthropogenic patches across the distribution range of a Western Ghats sky‐island‐endemic bird species complex. Data from 14 microsatellites for 218 individuals detected major genetic structuring by deep valleys, including one hitherto undescribed barrier. As expected, we found strong effects of historic genetic differentiation across natural patches, but not across anthropogenic fragments. Contrastingly, contemporary differentiation (DPS) was higher relative to historic differentiation (FST) in anthropogenic fragments, despite the species’ ability to historically traverse shallow valleys. Simulations of recent isolation resulted in high DPS/FST values, confirming recent isolation in Western Ghats anthropogenic fragments and also suggesting that this ratio can be used to identifying recent fragmentation in the context of historic connectedness. We suggest that in this landscape, in addition to natural patchiness affecting population connectivity, anthropogenic fragmentation additionally impacts connectivity, making anthropogenic fragments akin to islands within natural islands of montane habitat, a pattern that may be recovered in other sky‐island systems.  相似文献   

14.
The evolution of species or ecotypes can occur gradually through neutral and adaptive genetic changes. To explore the influence of natural selection during early phases of divergence, morphological and ecological discontinuity and its adaptive significance were investigated in six pairs of alpine and independently evolved montane populations of Heliosperma pusillum s.l.; the latter are usually taxonomically recognised at the species rank in spite of their highly debatable taxonomic value. We tested whether environmental conditions – characterised by Landolt indicator values from vegetation surveys and temperature measurements – and morphology of alpine and montane populations differ discretely and in parallel across six population pairs. By reciprocal transplantation experiments in natural environments in two population pairs and in climate chambers for five population pairs we compared fitness of native versus non‐native individuals. Alpine and montane populations differed in environmental conditions and morphology within each pair. Morphological differentiation occurred in parallel and correlated with environmental, but not with genetic distances. In both environments, native individuals had higher establishment success and plant size. Differentiation of the independently evolved montane populations is driven by natural selection and parallel, independent adaptation in response to drought, lower irradiance and higher, less fluctuating temperatures in montane populations. Our study system exemplifies rapid, parallel evolution leading to morphologically and ecologically strongly divergent, though fully interfertile, ecotypes.  相似文献   

15.
Both ‘species fitness difference’‐based deterministic processes, such as competitive exclusion and environmental filtering, and ‘species fitness difference’‐independent stochastic processes, such as birth/death and dispersal/colonization, can influence the assembly of soil microbial communities. However, how both types of processes are mediated by anthropogenic environmental changes has rarely been explored. Here we report a novel and general pattern that almost all anthropogenic environmental changes that took place in a grassland ecosystem affected soil bacterial community assembly primarily through promoting or restraining stochastic processes. We performed four experiments mimicking 16 types of environmental changes and separated the compositional variation of soil bacterial communities caused by each environmental change into deterministic and stochastic components, with a recently developed method. Briefly, because the difference between control and treatment communities is primarily caused by deterministic processes, the deterministic change was quantified as (mean compositional variation between treatment and control) – (mean compositional variation within control). The difference among replicate treatment communities is primarily caused by stochastic processes, so the stochastic change was estimated as (mean compositional variation within treatment) – (mean compositional variation within control). The absolute of the stochastic change was greater than that of the deterministic change across almost all environmental changes, which was robust for both taxonomic and functional‐based criterion. Although the deterministic change may become more important as environmental changes last longer, our findings showed that changes usually occurred through mediating stochastic processes over 5 years, challenging the traditional determinism‐dominated view.  相似文献   

16.
Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodiversity of native bee species changes across forested, agricultural, and urban landscapes. We collected bee community data from 36 sites across a 75,000 km2 region, and analyzed bee abundance, species richness, composition, and life‐history traits. Season‐long bee abundance and richness were not detectably different between natural and anthropogenic landscapes, but community phenologies differed strongly, with an early spring peak followed by decline in forests, and a more extended summer season in agricultural and urban habitats. Bee community composition differed significantly between all three land use types, as did phylogenetic composition. Anthropogenic land use had negative effects on the persistence of several life‐history strategies, including early spring flight season and brood parasitism, which may indicate adaptation to conditions in forest habitat. Overall, anthropogenic communities are not diminished subsets of contemporary natural communities. Rather, forest species do not persist in anthropogenic habitats, but are replaced by different native species and phylogenetic lineages preadapted to open habitats. Characterizing compositional and functional differences is crucial for understanding land use as a global change driver across large regional scales.  相似文献   

17.
Global population growth has caused extensive human‐induced environmental change, including a near‐ubiquitous transformation of the acoustical environment due to the propagation of anthropogenic noise. Because the acoustical environment is a critical ecological dimension for countless species to obtain, interpret and respond to environmental cues, highly novel environmental acoustics have the potential to negatively impact organisms that use acoustics for a variety of functions, such as communication and predator/prey detection. Using a comparative approach with 308 populations of 183 bird species from 14 locations in Europe, North American and the Caribbean, I sought to reveal the intrinsic and extrinsic factors responsible for avian sensitivities to anthropogenic noise as measured by their habitat use in noisy versus adjacent quiet locations. Birds across all locations tended to avoid noisy areas, but trait‐specific differences emerged. Vocal frequency, diet and foraging location predicted patterns of habitat use in response to anthropogenic noise, but body size, nest placement and type, other vocal features and the type of anthropogenic noise (chronic industrial vs. intermittent urban/traffic noise) failed to explain variation in habitat use. Strongly supported models also indicated the relationship between sensitivity to noise and predictive traits had little to no phylogenetic structure. In general, traits associated with hearing were strong predictors – species with low‐frequency vocalizations, which experience greater spectral overlap with low‐frequency anthropogenic noise tend to avoid noisy areas, whereas species with higher frequency vocalizations respond less severely. Additionally, omnivorous species and those with animal‐based diets were more sensitive to noise than birds with plant‐based diets, likely because noise may interfere with the use of audition in multimodal prey detection. Collectively, these results suggest that anthropogenic noise is a powerful sensory pollutant that can filter avian communities nonrandomly by interfering with birds' abilities to receive, respond to and dispatch acoustic cues and signals.  相似文献   

18.
Anthropogenic influences have dramatically altered the environments with which primates interact. In particular, the introduction of anthropogenic food sources to primate groups has implications for feeding behaviour, social behaviour, activity budgets, demography and life history. While the incorporation of anthropogenic foods can be beneficial to primates in a variety of nutritional ways including increased energetic return, they also carry risks associated with proximity to humans, such as risk of being hunted, disease risk and risk of conflict. Given such risks, we initiated a 3‐year study where we sought to understand the underlying nutritional motivations for anthropogenic food resource use by vervet monkeys (Cercopithecus aethiops) in the humanized matrix surrounding the Nabugabo Field Station in central Uganda. Feeding effort, defined as proportion of feeding scans spent on anthropogenic food, was not associated with ripe fruit availability nor with crop availability as determined by phenological monitoring. Likewise, there was no difference in the protein, fibre, or lipid composition of crop food items compared to wild food items. Individuals spent less time feeding overall in months over the 3 years with a higher proportion of time spent feeding on crop foods, suggesting a potential benefit in terms of accessibility (reduction in the proportion of activity budget devoted to feeding).  相似文献   

19.
Abstract Fine‐resolution palaeoecological and dendrochronological methods were used to investigate the impacts of climate change, and natural and anthropogenic disturbances on vegetation in the North Patagonian rainforest of southern Chile at decadal to century timescales during the late Holocene. A lake sediment mud–water interface core was collected from the northern Chonos Archipelago and analysed for pollen and charcoal. Dendrochronological analysis of tree cores collected from stands of Pilgerodendron uviferum close to the lake site was incorporated into the study. The combined analysis showed that the present mosaic of vegetation types in this region is a function of environmental changes across a range of timescales: millennial climate change, more recent natural and anthropogenic disturbances, and possibly short‐term climatic variations. Of particular interest is the spatiotemporal distribution of Pilgerodendron uviferum dieback/burning in the Chonos Archipelago region.  相似文献   

20.
Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS‐dominated reef producers to isoprene‐dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day ‘baseline’ trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号