首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The difficulty of integrating multiple theories, data and methods has slowed progress towards making unified inferences of ecological change generalizable across large spatial, temporal and taxonomic scales. However, recent progress towards a theoretical synthesis now provides a guiding framework for organizing and integrating all primary data and methods for spatiotemporal assemblage‐level inference in ecology. In this paper, we describe how recent theoretical developments can provide an organizing paradigm for linking advances in data collection and methodological frameworks across disparate ecological sub‐disciplines and across large spatial and temporal scales. First, we summarize the set of fundamental processes that determine change in multispecies assemblages across spatial and temporal scales by reviewing recent theoretical syntheses of community ecology. Second, we review recent advances in data and methods across the main sub‐disciplines concerned with ecological inference across large spatial, temporal and taxonomic scales, and organize them based on the primary fundamental processes they include, rather than the spatiotemporal scale of their inferences. Finally, we highlight how iteratively focusing on only one fundamental process at a time, but combining all relevant spatiotemporal data and methods, may reduce the conceptual challenges to integration among ecological sub‐disciplines. Moreover, we discuss a number of avenues for decreasing the practical barriers to integration among data and methods. We aim to reconcile the recent convergence of decades of thinking in community ecology and macroecology theory with the rapid progress in spatiotemporal approaches for assemblage‐level inference, at a time where a robust understanding of spatiotemporal change in ecological assemblages is more crucial than ever to conserve biodiversity.  相似文献   

2.
Ward  Tockner 《Freshwater Biology》2001,46(6):807-819
1. A broadened concept of biodiversity, encompassing spatio‐temporal heterogeneity, functional processes and species diversity, could provide a unifying theme for river ecology. 2. The theoretical foundations of stream ecology often do not reflect fully the crucial roles of spatial complexity and fluvial dynamics in natural river ecosystems, which has hindered conceptual advances and the effectiveness of efforts at conservation and restoration. 3. Inclusion of surface waters (lotic and lentic), subsurface waters (hyporheic and phreatic), riparian systems (in both constrained and floodplain reaches), and the ecotones between them (e.g. springs) as interacting components contributing to total biodiversity, is crucial for developing a holistic framework of rivers as ecosystems. 4. Measures of species diversity, including alpha, beta and gamma diversity, are a result of disturbance history, resource partitioning, habitat fragmentation and successional phenomena across the riverine landscape. A hierarchical approach to diversity in natural and altered river‐floodplain ecosystems will enhance understanding of ecological phenomena operating at different scales along multidimensional environmental gradients. 5. Re‐establishing functional diversity (e.g. hydrologic and successional processes) across the active corridor could serve as the focus of river conservation initiatives. Once functional processes have been reconstituted, habitat heterogeneity will increase, followed by corresponding increases in species diversity of aquatic and riparian biota.  相似文献   

3.
中国自然湿地螺类生态学研究进展   总被引:1,自引:0,他引:1  
螺类是软体动物腹足纲的通称,是湿地生态系统大型无脊椎动物的重要组成部分。湿地螺类在维持湿地生物多样性和复杂食物网结构,保障湿地物质循环和能量流动等方面具有重要的生态功能。从基本组成、生活型、功能群方面归纳了螺类群落结构特征;分析了螺类的时空分布格局;重点讨论了影响螺类群落结构的温度、盐度、底质等非生物因子和植被、物种间影响等生物因子以及人类对螺类的影响;概述了湿地演替过程中螺类群落的变化和螺类的环境指示功能。依据目前中国自然湿地螺类的研究特点和国际研究动态,展望了未来我国螺类群落的生态学研究的重点。  相似文献   

4.
Valladares and Gianoli (2007) tried to answer a key question, “how much ecology do we need to know to restore Mediterranean ecosystems?” by focusing on (1) plant–plant interactions; (2) environmental heterogeneity and the potential adaptation of transplanted plants; and (3) phenotypic plasticity of the planted species. We consider their choice of topics incomplete and potentially misleading because (1) it is clearly biased toward a narrow set of research topics (phenotypic plasticity, facilitation, and climate change); (2) it assumes that active restoration, and specifically revegetation, is needed; and (3) it conveys a false perception that other basic ecological aspects of Mediterranean ecosystems are sufficiently known. Instead, we review the current knowledge on seed dispersal, succession, and ecosystem functioning for Mediterranean ecosystems. We argue that decades of research on these topics have yielded few practical guidelines for restoration, something that needs to be urgently corrected. First, the current “establishment limitation paradigm” for plant recruitment does not acknowledge the role of dispersal limitation at large spatial scales. More attention should be paid to nucleation processes and directed seed dispersal mediated by animals. Second, studies of vegetation dynamics and succession in the Mediterranean have led to an overly simplistic view of successional dynamics. How fast and deterministic succession is remains mostly unexplored; long‐term monitoring of successional dynamics at different spatial scales is urgently needed. Third, information on the functional status of Mediterranean ecosystems is required to identify processes hindering natural recovery after disturbances and to set priorities on the areas and ecosystem components to be restored.  相似文献   

5.
Both biogeography and ecology seek to understand the processes that determine patterns in nature, but do so at different spatial and temporal scales. The two disciplines were not always so different, and are recently converging again at regional spatial scales and broad temporal scales. In order to avoid confusion and to hasten progress at the converging margins of each discipline, the following papers were presented at a symposium in the International Biogeography Society''s 2011 meeting, and are now published in this issue of the Philosophical Transactions of the Royal Society B. In a novel approach, groups of authors were paired to represent biogeographic and ecological perspectives on each of four topics: niche, comparative ecology and macroecology, community assembly, and diversity. Collectively, this compilation identifies points of agreement and disagreement between the two views on these central topics, and points to future research directions that may build on agreements and reconcile differences. We conclude this compilation with an overview on the integration of biogeography and ecology.  相似文献   

6.
Forests are under pressure from accelerating global change. To cope with the multiple challenges related to global change but also to further improve forest management we need a better understanding of (1) the linkages between drivers of ecosystem change and the state and management of forest ecosystems as well as their capacity to adapt to ongoing global environmental changes, and (2) the interrelationships within and between the components of forest ecosystems. To address the resulting challenges for the state of forest ecosystems in Central Europe, we suggest 45 questions for future ecological research. We define forest ecology as studies on the abiotic and biotic components of forest ecosystems and their interactions on varying spatial and temporal scales. Our questions cover five thematic fields and correspond to the criteria selected for describing the state of Europe’s forests by policy makers, i.e. biogeochemical cycling, mortality and disturbances, productivity, biodiversity and biotic interactions, and regulation and protection. We conclude that an improved mechanistic understanding of forest ecosystems is essential for the further development of ecosystem-oriented multifunctional forest management in the face of accelerating global change.  相似文献   

7.
Two fundamental axes – space and time – shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change – the effective manipulation of time by humans – has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non‐stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation.  相似文献   

8.
Conserving different spatial and temporal dimensions of biological diversity is considered necessary for maintaining ecosystem functions under predicted global change scenarios. Recent work has shifted the focus from spatially local (α‐diversity) to macroecological scales (β‐ and γ‐diversity), emphasizing links between macroecological biodiversity and ecosystem functions (MB–EF relationships). However, before the outcomes of MB–EF analyses can be useful to real‐world decisions, empirical modeling needs to be developed for natural ecosystems, incorporating a broader range of data inputs, environmental change scenarios, underlying mechanisms, and predictions. We outline the key conceptual and technical challenges currently faced in developing such models and in testing and calibrating the relationships assumed in these models using data from real ecosystems. These challenges are explored in relation to two potential MB–EF mechanisms: “macroecological complementarity” and “spatiotemporal compensation.” Several regions have been sufficiently well studied over space and time to robustly test these mechanisms by combining cutting‐edge spatiotemporal methods with remotely sensed data, including plant community data sets in Australia, Europe, and North America. Assessing empirical MB–EF relationships at broad spatiotemporal scales will be crucial in ensuring these macroecological processes can be adequately considered in the management of biodiversity and ecosystem functions under global change.  相似文献   

9.
土壤微生物群落构建理论与时空演变特征   总被引:6,自引:0,他引:6  
贺纪正  王军涛 《生态学报》2015,35(20):6575-6583
土壤微生物作为陆地生态系统的重要组成部分,直接或间接地参与几乎所有的土壤生态过程,在物质循环、能量转换以及污染物降解等过程中都发挥着重要作用。对土壤微生物时空演变规律及其形成机制的研究,不仅是微生物演变和进化的基础科学问题,也是预测微生物及其所介导的生态功能对环境条件变化响应、适应和反馈的理论依据。讨论了土壤微生物群落的定义、测度方法和指标,认为群落是联系动植物宏观生态学与微生物生态学的基础,群落构建机制是宏观和微观生态学都需要研究的核心科学问题;从生态学的群落构建理论出发,阐述了包括生态位理论/中性理论、过程理论和多样性-稳定性理论在土壤微生物时空演变研究中的应用,以及微生物群落在时间和空间上的分布特征及其尺度效应;确立了以微生物群落构建理论为基础、不同时空尺度下土壤微生物群落演变特征为主要内容的微生物演变研究的基本框架。  相似文献   

10.
Spatial patterns are a subfield of spatial ecology, and these patterns modify the temporal dynamics and stability properties of population densities at a range of spatial scales. Localized ecological interactions can generate striking large-scale spatial patterns in ecosystems through spatial self-organization. Possible mechanisms include oscillating consumer–resource interactions, localized disturbance–recovery processes, and scale-dependent feedback. However, in this paper, our main aim is to study the effect of tide on the pattern formation of a spatial plant-wrack model. We discuss the changes of the wavelength, wave speed, and the conditions of the spatial pattern formation, according to the dispersion relation formula. Both the mathematical analysis and numerical simulations reveal that the tide has great influence on the spatial pattern. More specifically, typical traveling spatial patterns can be obtained. Our obtained results are consistent with the previous observation that wracks exhibit traveling patterns, which is useful to help us better understand the dynamics of the real ecosystems.  相似文献   

11.
12.
宏观生态学研究的特点与方法   总被引:28,自引:4,他引:24  
宏观生态学是研究生态系统以上层次的生态学,研究对象为大尺度复杂系统,研究内容和方法都具有不同于传统生态学的明显特点。重视对空间异质性的研究,重视人类的生态作用,注意运用等级结构理论,其研究结果常常是非实验性和非稳定性的。遥感和地理信息系统是空间数据采集和管理、分析的主要手段,景观分析和景观模型是宏观生态研究的重要方法,定位观测试验的网络研究则是实现宏观整体研究的必由之路。  相似文献   

13.
Scale remains a foundational concept in ecology.Spatial scale,for instance,has become a central consideration in the way we understand landscape ecology and animal space use.Meanwhile,scale-dependent social processes can range from fine scale interactions to co-occurrence and overlapping home ranges.Furthermore,sociality can vary within and across seasons.Multilayer networks promise the explicit integration of the social,spatial,and temporal contexts.Given the complex interplay of sociality and animal space use in heterogeneous landscapes,there remains an important gap in our understanding of the influence of scale on animal social networks.Using an empirical case study,we discuss ways of considering social,spatial,and temporal scale in the context of multilayer caribou social networks.Effective integration of social and spatial processes,including biologically meaningful scales,within the context of animal social networks is an emerging area of research.We incorporate perspectives that link the social environment to spatial processes across scales in a multilayer context.  相似文献   

14.
景观生态学与退化生态系统恢复   总被引:29,自引:5,他引:29  
退化生态系统的恢复是一项艰巨任务,它需要考虑到所要恢复的退化生态系统的结构,多样性和其动态的整体性和长期性。现在对于退化生态系统恢复研究已经要使生态学家们关注受损生态系统的理论和实际问题。退化生态系统恢复所面临的挑战是理解和利用生态演替理论来完成并加速恢复进程。恢复的主要目标是建立一个自维持的,由不同的群落或生态系统组成的能够满足不同需要如生物保护和粮食生产需要的景观。景观生态学关注于大的空间尺度的生态学问题。景观生态学研究方法可以为退化生态系统恢复实践提供指导。在解决退化生态系统的恢复问题时,景观生态学的方法在理论和实践上是有效的。景观生态学中的核心概念和其一般原理斑块形状、生态系统间相互作用、镶嵌系列等都同退化生态系统的恢复有着密切的关系。如恢复地点的选择和适当的恢复要素的空间配置。在评价退化生态系统的恢复是否取得成功,利用景观生态学也具有重要的意义。景观生态学理论如景观格局与景观异质性理论,干扰理论和尺度理论都能够指导退化生态系统的恢复实践。同样地,退化生态系统的恢复可以为景观生态学的研究提供非常恰当的实验场。寓景观生态学思想于退化生态系统恢复过程是一种新的有效途径。  相似文献   

15.
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host‐specific feather lice (Phthiraptera: Ischnocera) that co‐occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, “wing lice” (Columbicola columbae) disperse phoretically by “hitchhiking” on pigeon flies (Diptera: Hippoboscidae), while “body lice” (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host–parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host–parasite cospeciation.  相似文献   

16.
17.
Aim The evolutionary processes structuring the composition of communities remain unclear due to the complexity of factors active at various spatial and temporal scales. Here, we conducted ecological and evolutionary analyses of communities of caddisflies in the genus Hydropsyche (Insecta: Trichoptera) composed of ecomorphologically differentiated species. Location River ecosystems in the Iberian Peninsula and northern Morocco. Methods Nineteen environmental variables were assessed at 180 local study sites and species presence/absence at these sites was used to determine their ecological niche. The evolutionary framework for all 19 species of Hydropsyche encountered was generated by phylogenetic analysis of the mitochondrial cytochrome c oxidase subunit I gene and three nuclear genes: wingless, elongation factor 1‐alpha and 28S RNA. The phylogenetic tree was used: (1) to assess evolutionary niche conservatism by ecological trait correlation with the tree; and (2) to analyse the phylogenetic relatedness of community member species, at three spatial scales (local stream reaches, drainage basins, biogeographical regions). Results Ecological measurements grouped most species into either headwater, mid‐stream or lowland specialists, and traits presumably relevant to river zonation were found to be phylogenetically conservative. Species assemblages at local stream reaches were mostly mono‐ or dispecific. Species diversity increased at larger spatial scales, by adding species with non‐overlapping ecological niches at the level of river basins and by turnover of anciently differentiated lineages at the level of biogeographical regions. This indicates the effects of competition and niche filtering on community structure locally, and ancient ecological diversification and allopatric speciation, respectively, in building up the species pool at basin and biogeographical scales. Main conclusions The study demonstrates the importance of scale (grain size) in studying what determines community composition. Current ecological factors (i.e. competitive exclusion) in Hydropsyche were evident only when studying narrow local sites, while studies of assemblages at larger spatial scales instead demonstrated the roles of ecological niche differentiation, phylogenetic history of trait diversification and allopatric speciation. Increasing the grain size of investigation reveals different portions of correlated spatial and evolutionary processes.  相似文献   

18.
Traditional approaches to ecotoxicology and ecological risk assessment frequently have ignored the complexities arising due to the spatial heterogeneity of natural systems. In recent years, however, ecologists have become increasingly aware of the influence of spatial organization on ecological processes. Landscape ecology provides a conceptual and theoretical framework for the analysis of spatial patterns, the characterization of spatial aspects of ecosystem function, and the understanding of landscape dynamics. Incorporating the insights of landscape ecology into ecotoxicology will enhance our ability to understand and ultimately predict the effects of toxic substances in ecological systems. Ecological risk assessments need to explicitly consider multiple spatial scales, accounting for heterogeneity within contaminated areas and for the larger landscape context. A simple simulation model is presented to illustrate the effects of spatial heterogeneity by linking an individual-based toxicokinetic model with a spatially distributed metapopulation model. Dispersal of organisms between contaminated and uncontaminated patches creates a situation where risk analysis must consider a spatial extent broader than the toxicant-contaminated area. In general, the addition of a toxicant to a source patch (i.e., a net exporter of individuals) will have a greater impact than the same toxicant addition to a sink patch (i.e., a net importer of individuals).  相似文献   

19.
Increasingly, restoration ecologists and managers are challenged to restore ecological processes that lead to self‐sustaining ecosystem dynamics. Due to changing environmental conditions, however, restoration goals need to include novel regimes beyond prior reference conditions or reference dynamics. In face of these fundamental challenges in process‐based restoration ecology, disturbance ecology can offer useful insights. Here, I discuss the contribution of disturbance ecology to understanding assembly rules, ecosystem dynamics, regime shifts, and nonlinear dynamics. Using the patch and multipatch concept, all insights are organized according to two spatial and two temporal categories: “patch–event,”“patch–multievent,”“multipatch–event,” and “multipatch–multievent.” This concept implies the consideration of both spatial patterns and temporal rhythms inside and outside of a restoration site. Emerging issues, such as uncoupling of internal and external dynamics, are considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号