首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Understanding the reciprocal interactions between the evolved characteristics of species and the environment in which each species is embedded is a major priority for evolutionary ecology. Here we use the perspective of ecological stoichiometry to test the hypothesis that natural selection on body growth rate affects consumer body stoichiometry. As body elemental composition (nitrogen, phosphorus) of consumers influences nutrient cycling and trophic dynamics in food webs, such differences should also affect biogeochemical processes and trophic dynamics. Consistent with the growth rate hypothesis, body growth rate and phosphorus content of individuals of the Daphnia pulex species complex were lower in Wisconsin compared to Alaska, where the brevity of the growing season places a premium on growth rate. Consistent with stoichiometric theory, we also show that, relative to animals sampled in Wisconsin, animals sampled in Alaska were poor recyclers of P and suffered greater declines in growth when fed low‐quality, P‐deficient food. These results highlight the importance of evolutionary context in establishing the reciprocal relationships between single species and ecosystem processes such as trophic dynamics and consumer‐driven nutrient recycling.  相似文献   

2.
Seabirds deposit large amounts of nutrient rich guano on their nesting islands. The increased nutrient availability strongly affects plants and consumers. Consumer response differs among taxonomic groups, but mechanisms causing these differences are poorly understood. Ecological stoichiometry might provide tools to understand these mechanisms. ES suggests that nutrient rich taxa are more likely to be nutrient limited than nutrient poorer taxa and are more favored under nutrient enrichment. Here, we quantified differences in the elemental composition of soil, plants, and consumers between islands with and without nesting cormorant colonies and tested predictions made based on ES by relating the elemental composition and the eventual mismatch between consumer and resource stoichiometry to observed density differences among the island categories. We found that nesting cormorants radically changed the soil nutrient content and thereby indirectly plant nutrient content and resource quality to herbivores. In contrast, consumers showed only small differences in their elemental composition among the island categories. While we cannot evaluate the cause of the apparent homeostasis of invertebrates without additional data, we can conclude that from the perspective of the next trophic level, there is no difference in diet quality (in terms of N and P content) between island categories. Thus, bottom-up effects seemed mainly be mediated via changes in resource quantity not quality. Despite a large potential trophic mismatch we were unable to observe any relation between the invertebrate stoichiometry and their density response to nesting cormorant colonies. We conclude that in our system stoichiometry is not a useful predictor of arthropod responses to variation in resource nutrient content. Furthermore, we found no strong evidence that resource quality was a prime determinant of invertebrate densities. Other factors like resource quantity, habitat structure and species interactions might be more important or masked stoichiometric effects.  相似文献   

3.
Pavel Kratina  Monika Winder 《Oikos》2015,124(10):1337-1345
Ecologists and ecosystem managers often base their understanding of trophic dynamics on consumer and resource biomass. However, the factors that alter the relative nutritional value of resources are often poorly understood, despite their potential to decouple trophic interactions. Recent population declines in pelagic fishes of the upper San Francisco Estuary were not accompanied by an equivalent decrease in zooplankton biomass, which are the main resource for the fish and their larvae. It was hypothesized that changes in zooplankton nutritional conditions following the establishment of invasive species caused food‐quality related limitations for these higher‐order consumers. Using stable isotopes, elemental stoichiometry and fatty acid analyses for all dominant invasive and native zooplankton taxa and seston, we characterized the plankton community structure in the estuary and demonstrated taxon‐specific differences in their nutritional value. We then quantified the temporal dynamics in meso‐zooplankton proportions of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), polyunsaturated fatty acids (PUFA), and ratio of n3:n6 fatty acids. We found temporal increase in the community‐level DHA, n3 to n6 fatty acid ratio, decrease in the community‐level EPA and PUFA in the brackish water region, but no change in the bulk PUFA proportions in the freshwater region of the estuary. These changes were caused mainly by declines of native cladocerans that are rich in EPA and by an increase in the dominance of invasive taxa with high DHA concentrations, similar to that of native taxa. Although we showed temporal shifts in individual fatty acid classes, the proportion of the essential fatty acids remained relatively high, suggesting that nutritional prey availability for fish remained unchanged with the shift in species composition. We argue that the nutritional content of resource communities should be considered when analyzing the long‐term trophic dynamics and designing effective management and restoration strategies.  相似文献   

4.
Human activities are altering the fundamental geography of biogeochemicals. Yet we lack an understanding of how the spatial patterns in organismal stoichiometry affect biogeochemical processes and the tools to predict the impacts of global changes on biogeochemical processes. In this contribution we develop stoichiometric distribution models (StDMs), which allow us to map spatial structure in resource elemental composition across a landscape and evaluate spatial responses of consumers. We parameterise StDMs for a consumer‐resource (moose‐white birch) system and demonstrate that we can develop predictive models of resource stoichiometry across a landscape and that such models could improve our predictions of consumer space use. With results from our study system application, we argue that explicit consideration of the spatial patterns in organismal elemental composition may uncover emergent individual, population, community and ecosystem properties that are not revealed at the local extents routinely used in ecological stoichiometry. We discuss perspectives for further developments and application of StDMs to advance three emerging frameworks for spatial ecosystem ecology in an era of global change; meta‐ecosystem theory, macroecological stoichiometry and remotely sensed biogeochemistry. Progress on these emerging frameworks will allow for the integration of ecological stoichiometry and individual space use and fitness.  相似文献   

5.
The extensive use of traits in ecological studies over the last few decades to predict community functions has revealed that plant traits are plastic and respond to various environmental factors. These plant traits are assumed to predict how plants compete and capture resources. Variation in stoichiometric ratios both within and across species reflects resource capture dynamics under competition. However, the impact of local plant diversity on species‐specific stoichiometry remains poorly studied. Here, we analyze how spatial and temporal diversity in resource‐acquisition traits affects leaf elemental stoichiometry of plants (i.e. the result of resource capture) and how flexible this stoichiometry is depending on the functional composition of the surrounding community. Therefore, we assessed inter‐ and intraspecific variations of leaf carbon (C), nitrogen (N), and phosphorus (P) (and their ratios) of 20 grassland species in a large trait‐based plant diversity experiment located in Jena (Germany) by measuring leaf elemental concentrations at the species‐level along a gradient in plant trait dissimilarity. Our results show that plants showed large intra‐ and interspecific variation in leaf stoichiometry, which was only partly explained by the functional group identity (grass or herb) of the species. Elemental concentrations (N, P, but not C) decreased with plant species richness, and species tended to become more deviant from their monoculture stoichiometry with increasing trait dissimilarity in the community. These responses differed among species, some consistently increased or decreased in P and N concentrations; for other species, the negative or positive change in P and N concentrations increased with increasing trait difference between the target species and the remaining community. The strength of this relationship was significantly associated to the relative position of the species along trait gradients related to resource acquisition. Trait‐difference and trait‐diversity thus were important predictors of how species’ resource capture changed in competitive neighbourhoods.  相似文献   

6.
Stoichiometric homeostasis of heterotrophs is a common, but not always well‐examined premise in ecological stoichiometry. We experimentally evaluated the relationship between substrate (plant litter) and consumer (microorganisms) stoichiometry for a tropical terrestrial decomposer system. Variation in microbial C : P and N : P ratios tracked that of the soluble litter fraction, but not that of bulk leaf litter material. Microbial N and P were not isometrically related, suggesting higher rates of P than N sequestration in microbial biomass. Shifts in microbial stoichiometry were related to changes in microbial community structure. Our results indicate that P in dissolved form is a major driver of terrestrial microbial stoichiometry, similar to aquatic environments. The demonstrated relative plasticity in microbial C : P and N : P and the critical role of P have important implications for theoretical modelling and contribute to a process‐based understanding of stoichiometric relationships and the flow of elements across trophic levels in decomposer systems.  相似文献   

7.
A general model of linearized species interactions, essentially Lotka–Volterra theory, applied to questions of biodiversity has previously been shown to be a powerful tool for understanding local species–abundance patterns and community responses to environmental change for a single trophic level. Here this approach is extended to predict community composition and responses to environmental changes in trophically structured systems. We show how resource and consumer species richness and their relative abundances vary with the means and variances in enrichment level and strengths of intra- and interspecific interactions. Also demonstrated are the responses of local resource and consumer species richness to the global species pools at both trophic levels, as well as the covariation with net resource productivity. These predictions for resource and consumer specific responses to changes in environmental enrichment and global biodiversity are directly testable.  相似文献   

8.
Key processes such as trophic interactions and nutrient cycling are often influenced by the element content of organisms. Previous analyses have led to some preliminary understanding of the relative importance of evolutionary and ecological factors determining animal stoichiometry. However, to date, the patterns and underlying mechanisms of consumer stoichiometry at interspecific and intraspecific levels within natural ecosystems remain poorly investigated. Here, we examine the association between phylogeny, trophic level, body size, and ontogeny and the elemental composition of 22 arthropod as well as two lizard species from the coastal zone of the Atacama Desert in Chile. We found that, in general, whole‐body P content was more variable than body N content both among and within species. Body P content showed a significant phylogenetic signal; however, phylogeny explained only 4% of the variation in body P content across arthropod species. We also found a significant association between trophic level and the element content of arthropods, with carnivores having 15% greater N and 70% greater P contents than herbivores. Elemental scaling relationships across species were only significant for body P content, and even the P content scaling relationship was not significant after controlling for phylogeny. P content did decrease significantly with body size within most arthropod species, which may reflect the size dependence of RNA content in invertebrates. In contrast, larger lizards had higher P contents and lower N:P ratios than smaller lizards, which may be explained by size‐associated differences in bone and scale investments. Our results suggests that structural differences in material allocation, trophic level and phylogeny can all contribute to variation in the stoichiometry of desert consumers, and they indicate that the elemental composition of animals can be useful information for identifying broad‐scale linkages between nutrient cycling and trophic interactions in terrestrial food webs.  相似文献   

9.
Plant elemental composition can indicate resource limitation, and changes in key elemental ratios (e.g. plant C:N ratios) can influence rates including herbivory, nutrient recycling, and pathogen infection. Although plant stoichiometry can influence ecosystem‐level processes, very few studies have addressed whether and how plant C:N stoichiometry changes with plant diversity and composition. Here, using two long‐term experimental manipulations of plant diversity (Jena and Cedar Creek), we test whether plant richness (species and functional groups) or composition (functional group proportions) affects temporal trends and variability of community‐wide C:N stoichiometry. Site fertility determined the initial community‐scale C:N ratio. Communities growing on N‐poor soil (Cedar Creek) began with higher C:N ratios than communities growing on N‐rich soil (Jena). However, site‐level plant C:N ratios converged through time, most rapidly in high diversity plots. In Jena, plant community C:N ratios increased. This temporal trend was stronger with increasing richness. However, temporal variability of C:N decreased as plant richness increased. In contrast, C:N decreased over time at Cedar Creek, most strongly at high species and functional richness, whereas the temporal variability of C:N increased with both measures of diversity at this site. Thus, temporal trends in the mean and variability of C:N were underlain by concordant changes among sites in functional group proportions. In particular, the convergence of community‐scale C:N over time at these very different sites was mainly due to increasing proportions of forbs at both sites, replacing high mean C:N (C4 grasses, Cedar Creek) or low C:N (legumes, Jena) species. Diversity amplified this convergence; although temporal trends differed in sign between the sites, these trends increased in magnitude with increasing species richness. Our results suggest a predictive mechanistic link between trends in plant diversity and functional group composition and trends in the many ecosystem rates that depend on aboveground community C:N. Synthesis We compared the effect of plant diversity on the temporal dynamics of community stoichiometry in two long‐term grassland diversity experiments: the Cedar Creek and Jena Experiments. Changes in community C:N ratios were accelerated by increasing diversity at both sites, but in opposite directions depending on soil fertility. Stoichiometry changes were driven by shifts of functional group composition differing in their elemental compositions, the identity of the functional groups depending on the site. Thus, we highlighted that community turnover constrained the effect of diversity on plant stoichiometry at both sites  相似文献   

10.
Changes in plant diversity have consequences for higher trophic levels, e.g., higher plant diversity can enhance the reproduction and fitness of plant-associated insects. This response of higher trophic levels potentially depends on diversity-related changes in both resource quantity (abundance) and quality (nutritional content). The availability of elemental nutrients in plant resources is one aspect of nutritional quality, but has rarely been addressed as a pathway relating plant diversity to associated insects. Using the experimental plant diversity gradient of a large biodiversity grassland project, the Jena-Experiment, we analysed the %C, %N and %P and the molar ratios of those elements (C:N, C:P and N:P) in a pollinating bee, Chelostoma distinctum, and an herbivorous grasshopper, Chorthippus parallelus, reared on plots of different plant diversity. Insects showed higher content of C, N and P (% dry mass), and lower C:N and C:P ratios than plants. C:N ratios were significantly higher in grasshoppers than in bees and higher in females than in males of both species. Increasing plant species richness increased the C:N ratio of male bees and female grasshoppers. In both groups, stoichiometry was positively related to plant stoichiometry (male bees: C:P and N:P; grasshoppers: C:N and N:P). Path analysis revealed that diversity-driven changes in plant elemental composition can have consequences for abundance and chemical composition of higher trophic levels, with different responses of the two functional groups.  相似文献   

11.
As a response to current climate changes, individual species have changed various biological traits, illustrating an inherent phenotypic plasticity. However, as species are embedded in an ecological network characterised by multiple consumer–resource interactions, ecological mismatches are likely to arise when interacting species do not respond homogeneously. The approach of biological networks analysis calls for the use of structural equation modelling (SEM), a multidimensional analytical setup that has proven particularly useful for analysing multiple interactions across trophic levels. Here we apply SEM to a long-term dataset from a High-Arctic ecosystem to analyse how phenological responses across three trophic levels are coupled to snowmelt patterns and how changes may cascade through consumer–resource interactions. Specifically, the model included the effect of snowmelt on a High-Arctic tri-trophic system of flowers, insects and waders (Charadriiformes), with latent factors representing phenology (timing of life history events) and performance (abundance or reproduction success) for each trophic level. The effects derived from the model demonstrated that the time of snowmelt directly affected plant and arthropod phenology as well as the performance of all included trophic levels. Additionally, timing of snowmelt appeared to indirectly influence wader phenology as well as plant, arthropod and wader performance through effects on adjacent trophic levels and lagged effects. The results from the tri-trophic community presented here emphasise that effects of climate on species in consumer–resource systems may propagate through trophic levels.  相似文献   

12.
陆地生态系统植被氮磷化学计量研究进展   总被引:17,自引:0,他引:17       下载免费PDF全文
刘超  王洋  王楠  王根轩 《植物生态学报》2012,36(11):1205-1216
因化学功能的耦合和元素的不可替代性, 植物对N、P的需求和利用存在严格的比例。植物N、P化学计量在不同功能群、生长地区、生长季、器官之间以及环境梯度下存在明显的变化规律。多数研究从N、P浓度、N:P及N、P间异速指数等角度分析了植物化学计量变化规律, 并探讨其在全球范围内的具体数值。为增进对植物响应全球变化的理解, 该文综述了N、P化学计量的影响因素及其机理的最新研究进展, 并指出未来拟重点研究的方向。  相似文献   

13.
Most spatial ecology focuses on how species dispersal affects community dynamics and coexistence. Ecosystems, however, are also commonly connected by flows of resources. We experimentally tested how neighbouring communities indirectly influence each other in absence of dispersal, via resource exchanges. Using two‐patch microcosm meta‐ecosystems, we manipulated community composition and dynamics, by varying separately species key functional traits (autotroph versus heterotroph species and size of consumer species) and trophic structure of aquatic communities (species growing alone or in presence of competitors or predators). We then analysed the effects of species functional traits and trophic structure on communities connected through spatial subsidies in the absence of actual dispersal. Both functional traits and trophic structure strongly affected dynamics across neighbouring communities. Heterotroph communities connected to autotroph neighbours developed better than with heterotroph neighbours, such that coexistence of competitors was determined by the functional traits of the neighbouring community. Densities in autotroph communities were also strikingly higher when receiving subsidies from heterotroph communities compared to their own subsidies when grown in isolated ecosystems. In contrast, communities connected to predator‐dominated ecosystems collapsed, without any direct contact with the predators. Our results demonstrate that because community composition and structure modify the distribution of biomass within a community, they may also affect communities connected through subsidies through quantitative and qualitative changes of detritus flows. This stresses that ecosystem management should account for such interdependencies mediated by spatial subsidies, given that local community alterations cascade across space onto other ecosystems even if species dispersal is completely absent.  相似文献   

14.
To maintain constant chemical composition, i.e. elemental homeostasis, organisms have to consume resources of sufficient quality to meet their own specific stoichiometric demand. Therefore, concentrations of elements indicate resource quality, and rare elements in the environment may act as limiting factors for individual organisms scaling up to constrain population densities. We investigated how the biomass densities of invertebrate populations of temperate forest soil communities depend on 1) the stoichiometry of the basal litter according to ecological stoichiometry concepts and 2) the population average body mass as predicted by metabolic theory. We used a large data set on biomass densities of 4959 populations across 48 forests in three regions of Germany. Following various ecological stoichiometry hypotheses, we tested for effects of the carbon‐to‐element ratios of 10 elements. Additionally, we included the abiotic litter characteristics habitat size (represented by litter depth), litter diversity and pH, as well as forest type as an indicator for human management. Across 12 species groups, we found that the biomass densities scaled significantly with population‐averaged body masses thus supporting metabolic theory. Additionally, 10 of these allometric scaling relationships exhibited interactions with stoichiometric and abiotic co‐variables. The four most frequent co‐variables were 1) forest type, 2) the carbon‐to‐phosphorus ratio (C:P), 3) the carbon‐to‐sodium ratio (C:Na), and the carbon‐to‐nitrogen ratio (C:N). Hence, our analyses support the sodium shortage hypothesis for microbi‐detritivores, the structural elements hypothesis for some predator groups (concerning N), and the secondary productivity hypothesis (concerning P) across all trophic groups in our data. In contrast, the ecosystem size hypothesis was only supported for some meso‐ and macrofauna detritivores. Our study is thus providing a comprehensive analysis how the elemental stoichiometry of the litter as the basal resource constrain population densities across multiple trophic levels of soil communities.  相似文献   

15.
Synthesis The interplay between bottom‐up and top‐down effects is certainly a general manifestation of any changes in both species abundances and diversity. Summary variables, such as species numbers, diversity indices or lumped species abundances provide too limited information about highly complex ecosystems. In contrast, species by species analyses of ecological communities comprising hundreds of species are inevitably only snapshot‐like and lack generality in explaining processes within communities. Our synthesis, based on species matrices of functional groups of all trophic levels, simplifies community complexity to a manageable degree while retaining full species‐specific information. Taking into account plant species richness, plant biomass, soil properties and relevant spatial scales, we decompose variance of abundance in consumer functional groups to determine the direction and the magnitude of community controlling processes. After decades of intensive research, the relative importance of top–down and bottom–up control for structuring ecological communities is still a particularly disputed issue among ecologists. In our study, we determine the relative role of bottom–up and top–down forces in structuring the composition of 13 arthropod functional groups (FG) comprising different trophic consumer levels. Based on species‐specific plant biomass and arthropod abundance data from 50 plots of a grassland biodiversity experiment, we quantified the proportions of bottom–up and top–down forces on consumer FG composition while taking into account direct and indirect effects of plant diversity, functional diversity, community biomass, soil properties and spatial arrangement of these plots. Variance partitioning using partial redundancy analysis explained 21–44% of total variation in arthropod functional group composition. Plant‐mediated bottom–up forces accounted for the major part of the explainable variation within the composition of all FGs. Predator‐mediated top–down forces, however, were much weaker, yet influenced the majority of consumer FGs. Plant functional group composition, notably legume composition, had the most important impact on virtually all consumer FGs. Compared to plant species richness and plant functional group richness, plant community biomass explained a much higher proportion of variation in consumer community composition.  相似文献   

16.
Priyanga Amarasekare 《Oikos》2016,125(4):514-525
Much is known about the evolution of dispersal when species interact with their resources or natural enemies, but very little is known about dispersal evolution when species interact with both resources and natural enemies. Here I investigate how the dispersal of an intermediate consumer evolves in response to its interactions with a basal resource and top predator. I find that dispersal evolution is possible even when the consumer species is not directly affected by environmental variability, but rather experiences the consequences that such variability has on its resource and predator. Spatial variation in the consumer's fitness is driven by spatial heterogeneity in resource productivity, which determines whether a predator can colonize a resource‐consumer community. Temporal variation in the consumer's fitness is driven by random disturbances that cause periodic local extinctions of the predator, followed by recolonizations that lead to transient fluctuations in consumer abundance. When spatial variation in resource productivity is low and the predator can colonize all patches in the landscape, there is no spatial variation in consumer fitness but temporal variation in fitness favors the evolution of a dispersal monomorphism. When spatial variation in resource productivity is high and the predator cannot colonize many patches in the landscape, spatial variation in fitness selects against dispersal. In this case, temporal variation can promote the evolution of a dispersal polymorphism with sedentary and mobile phenotypes, but only for certain types of tri‐trophic interactions. This finding underscores the importance of indirect interactions in shaping the evolution of dispersal. While the ecological community can provide a strong selective environment for the evolution of dispersal, the nature of interactions between trophic levels can also impose constraints on evolution.  相似文献   

17.

Background

Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood.

Methodology/Principal Findings

Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments.

Conclusions/Significance

Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing herbivore diversity can stabilize ecosystem flux rates in the face of perturbations.  相似文献   

18.
Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well‐understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher‐order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free‐roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets.This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs.  相似文献   

19.
20.
The last 15 years has seen parallel surges of interest in two research areas that have rarely intersected: biodiversity and ecosystem functioning (BEF), and multispecies predator–prey interactions (PPI). Research addressing role of biodiversity in ecosystem functioning has focused primarily on single trophic‐level systems, emphasizing additive effects of diversity that manifest through resource partitioning and the sampling effect. Conversely, research addressing predator–prey interactions has focused on two trophic‐level systems, emphasizing indirect and non‐additive interactions among species. Here, we use a suite of consumer‐resource models to organize and synthesize the ways in which consumer species diversity affects the densities of both resources and consumer species. Specifically, we consider sampling effects, resource partitioning, indirect effects caused by intraguild interactions and non‐additive effects. We show that the relationship between consumer diversity and the density of resources and consumer species are broadly similar for systems with one vs. two trophic levels, and that indirect and non‐additive interactions generally do little more than modify the impacts of diversity established by the sampling effect and resource partitioning. The broad similarities between systems with one vs. two trophic levels argue for greater communication between researchers studying BEF, and researchers studying multispecies PPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号