首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of ecological and evolutionary concepts and tools has led to improved understanding of how diversification, dispersal, community assembly, long‐term coexistence and extinction shape patterns of biological diversity. Phylogeography, with its focus on Quaternary interactions within and between populations, can help elucidate the processes acting between the evolutionary time‐scales on which species arise and the ecological time‐scales on which members of an assemblage interact with each other and their environment. Still, it has yet to be widely incorporated in that synthesis. Here, we highlight three areas where integration of phylogeography with ecological and evolutionary approaches can provide new insights into key questions. First, phylogeography can help clarify the roles of isolation, niche conservatism and environmental stability in generating patterns of alpha‐ and beta‐diversity. Second, phylogeography can help isolate the effects of Quaternary dispersal limitation from other factors driving community assembly and spatial turnover. Third, phylogeography can help identify key processes leading to and resulting from extinction events, including the population dynamics of species range reduction and its effects on the strength and temporal flexibility of networks of species interactions. We conclude with an outlook on the data‐gathering protocols necessary for this collaborative, interdisciplinary research agenda.  相似文献   

2.
With increasing urbanization, urban‐fragmented landscapes are becoming more and more prevalent worldwide. Such fragmentation may lead to small, isolated populations that face great threats from genetic factors that affect even avian species with high dispersal propensities. Yet few studies have investigated the population genetics of species living within urban‐fragmented landscapes in the Old World tropics, in spite of the high levels of deforestation and fragmentation within this region. We investigated the evolutionary history and population genetics of the olive‐winged bulbul (Pycnonotus plumosus) in Singapore, a highly urbanized island which retains <5% of its original forest cover in fragments. Combining our own collected and sequenced samples with those from the literature, we conducted phylogenetic and population genetic analyses. We revealed high genetic diversity, evidence for population expansion, and potential presence of pronounced gene flow across the population in Singapore. This suggests increased chances of long‐term persistence for the olive‐winged bulbul and the ecosystem services it provides within this landscape.  相似文献   

3.
Patterns of sex‐biased dispersal (SBD) are typically consistent within taxa, for example female‐biased in birds and male‐biased in mammals, leading to theories about the evolutionary pressures that lead to SBD. However, generalizations about the evolution of sex biases tend to overlook that dispersal is mediated by ecological factors that vary over time. We examined potential temporal variation in between‐ and within‐population dispersal over an 11‐year period in a bird, the dark‐eyed junco (Junco hyemalis). We measured between‐population dispersal patterns using genetic assignment indices and found yearly variation in which sex was more likely to have immigrated. When we measured within‐population spatial genetic structure and mark–recapture dispersal distances, we typically found yearly SBD patterns that mirrored between‐population dispersal, indicating common eco‐evolutionary causes despite expected differences due to the scale of dispersal. However, in years without detectable between‐population sex biases, we found genetic similarity between nearby males within our population. This suggests that, in certain circumstances, ecological pressures may act on within‐population dispersal without affecting dispersal between populations. Alternatively, current analytical tools may be better able to detect within‐population SBD. Future work will investigate potential causes of the observed temporal variation in dispersal patterns and whether they have greater effects on within‐population dispersal.  相似文献   

4.
Aphid species within the genus Tuberculatus Mordvilko (Hemiptera: Aphididae) exhibit a variety of interactions with ants, ranging from close associations to non‐attendance. A previous study indicated that despite wing possession, ant‐attended Tuberculatus species exhibited low dispersal rates compared with non‐attended species. This study examined if presence or absence of mutualistic interactions and habitat continuity of host plants affected intraspecific genetic diversity and genetic differentiation in mitochondrial DNA cytochrome oxidase I (COI) sequences. Sympatric ant‐attended Tuberculatus quercicola (Matsumura) (Hemiptera: Aphididae) and non‐attended Tuberculatus paiki Hille Ris Lambers (Hemiptera: Aphididae) were collected from the daimyo oak Quercus dentata Thunberg (Fagales: Fagaceae) in Japan and examined for haplotype variability. Seventeen haplotypes were identified in 568 T. quercicola individuals representing 23 populations and seven haplotypes in 425 T. paiki representing 19 populations. Haplotype diversity, which indicates the mean number of differences between all pairs of haplotypes in the sample, and nucleotide diversity were higher in T. quercicola than T. paiki. Analysis of molecular variance (AMOVA) showed higher genetic differentiation among populations within groups of T. quercicola (39.8%) than T. paiki (22.6%). The effects of attendant ant species on genetic differentiation in T. quercicola were not distinguishable from geographic factors. Despite low dispersal rates, host plant habitat continuity might facilitate widespread dispersal of a T. quercicola haplotype in Hokkaido. These results suggested that following T. quercicola colonization, gene flow among populations was limited, resulting in genetic drift within populations. However, frequent T. paiki dispersal is clearly evident by low genetic differentiation among populations within groups, resulting in lower haplotype diversity.  相似文献   

5.
Species with narrow environmental tolerances are often distributed within fragmented patches of suitable habitat, and dispersal among these subpopulations can be difficult to directly observe. Genetic data can help quantify gene flow between localities, which is especially important for vulnerable species with a disjunct range. The Shenandoah salamander (Plethodon shenandoah) is a federally endangered species known only from three mountaintops in Virginia, USA. To reconstruct the evolutionary history and population connectivity of this species, we generated both mitochondrial and nuclear data using sequence capture from individuals collected across all three mountaintops. Applying population and landscape genetic methods, we found strong population structure that was independent of geographic distance. Both the nuclear markers and mitochondrial genomes indicated a deep split between the most southern population and the genetically similar central and northern populations. Although there was some mitochondrial haplotype‐splitting between the central and northern populations, there was admixture in nuclear markers. This is indicative of either a recent split or current male‐biased dispersal among mountain isolates. Models of landscape resistance found that dispersal across north‐facing slopes at mid‐elevation levels best explain the observed genetic structure among populations. These unexpected results highlight the importance of incorporating landscape features in understanding and predicting the movement and fragmentation of this range‐restricted salamander species across space.  相似文献   

6.
Habitat fragmentation increasingly threatens the services provided by natural communities and ecosystem worldwide. An understanding of the eco‐evolutionary processes underlying fragmentation‐compromised communities in natural settings is lacking, yet critical to realistic and sustainable conservation. Through integrating the multivariate genetic, biotic and abiotic facets of a natural community module experiencing various degrees of habitat fragmentation, we provide unique insights into the processes underlying community functioning in real, natural conditions. The focal community module comprises a parasitic butterfly of conservation concern and its two obligatory host species, a plant and an ant. We show that both historical dispersal and ongoing habitat fragmentation shape population genetic diversity of the butterfly Phengaris alcon and its most limited host species (the plant Gentiana pneumonanthe). Genetic structure of each species was strongly driven by geographical structure, altitude and landscape connectivity. Strikingly, however, was the strong degree of genetic costructure among the three species that could not be explained by the spatial variables under study. This finding suggests that factors other than spatial configuration, including co‐evolutionary dynamics and shared dispersal pathways, cause parallel genetic structure among interacting species. While the exact contribution of co‐evolution and shared dispersal routes on the genetic variation within and among communities deserves further attention, our findings demonstrate a considerable degree of genetic parallelism in natural meta‐communities. The significant effect of landscape connectivity on the genetic diversity and structure of the butterfly also suggests that habitat fragmentation may threaten the functioning of the community module on the long run.  相似文献   

7.
Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre‐ and post‐fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind‐pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre‐ and post‐fragmentation cohorts. Significant genetic structure was observed in pre‐fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post‐fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long‐term persistence of small remnant populations.  相似文献   

8.
Dispersal is a key process in population and evolutionary ecology. Individual decisions are affected by fitness consequences of dispersal, but these are difficult to measure in wild populations. A long‐term dataset on a geographically closed bird population, the Mauritius kestrel, offers a rare opportunity to explore fitness consequences. Females dispersed further when the availability of local breeding sites was limited, whereas male dispersal correlated with phenotypic traits. Female but not male fitness was lower when they dispersed longer distances compared to settling close to home. These results suggest a cost of dispersal in females. We found evidence of both short‐ and long‐term fitness consequences of natal dispersal in females, including reduced fecundity in early life and more rapid aging in later life. Taken together, our results indicate that dispersal in early life might shape life history strategies in wild populations.  相似文献   

9.
Our understanding of the evolutionary history and ecology of cave‐associated species has been driven historically by studies of morphologically adapted cave‐restricted species. Our understanding of the evolutionary history and ecology of nonrestricted cave species, troglophiles, is limited to a few studies, which present differing accounts of troglophiles’ relationship with the cave habitat, and its impact on population dynamics. Here, we used phylogenetics, demographic statistics, and population genetic methods to study lineage divergence, dates of divergence, and population structure in the Cave Salamander, Eurycea lucifuga, across its range. In order to perform these analyses, we sampled 233 individuals from 49 populations, using sequence data from three gene loci as well as genotyping data from 19 newly designed microsatellite markers. We find, as in many other species studied in a phylogeographic context, discordance between patterns inferred from mitochondrial relationships and those inferred by nuclear markers indicating a complicated evolutionary history in this species. Our results suggest Pleistocene‐based divergence among three main lineages within E. lucifuga corresponding to the western, central, and eastern regions of the range, similar to patterns seen in species separated in multiple refugia during climatic shifts. The conflict between mitochondrial and nuclear patterns is consistent with what we would expect from secondary contact between regional populations following expansion from multiple refugia.  相似文献   

10.
Between‐individual variation in phenotypes within a population is the basis of evolution. However, evolutionary and behavioural ecologists have mainly focused on estimating between‐individual variance in mean trait and neglected variation in within‐individual variance, or predictability of a trait. In fact, an important assumption of mixed‐effects models used to estimate between‐individual variance in mean traits is that within‐individual residual variance (predictability) is identical across individuals. Individual heterogeneity in the predictability of behaviours is a potentially important effect but rarely estimated and accounted for. We used 11 389 measures of docility behaviour from 1576 yellow‐bellied marmots (Marmota flaviventris) to estimate between‐individual variation in both mean docility and its predictability. We then implemented a double hierarchical animal model to decompose the variances of both mean trait and predictability into their environmental and genetic components. We found that individuals differed both in their docility and in their predictability of docility with a negative phenotypic covariance. We also found significant genetic variance for both mean docility and its predictability but no genetic covariance between the two. This analysis is one of the first to estimate the genetic basis of both mean trait and within‐individual variance in a wild population. Our results indicate that equal within‐individual variance should not be assumed. We demonstrate the evolutionary importance of the variation in the predictability of docility and illustrate potential bias in models ignoring variation in predictability. We conclude that the variability in the predictability of a trait should not be ignored, and present a coherent approach for its quantification.  相似文献   

11.
In order to conserve forest plant species under the particularly high constraints that represent urban surroundings, it is necessary to identify the key factors for population persistence. This study examined within‐ and between‐population pollen dispersal using fluorescent dye as pollen analogue, and genetic variation and structure using 15 allozyme loci in Centaurium erythraea, an insect‐pollinated, early‐successional forest biennial herb occurring in a peri‐urban forest (Brussels urban zone, Belgium). Dye dispersal showed an exponential decay distribution, with most dye transfers occurring at short distances (<15 m), and only a few long‐distance events (up to 743 m). Flowers of C. erythraea are mainly visited by Syrphids (Diptera) and small bees, which are usually considered as short‐distance pollen dispersers, and occasionally by bumblebees, which are usually longer‐distance pollen dispersers. Small and large dye source populations differed in dye deposition patterns. The populations showed low genetic diversity, high inbreeding coefficients (FIS) and high genetic differentiation (FST), suggesting restricted gene flow, which can be expected for an early‐successional biennial species with a predominantly selfing breeding system and fluctuating population sizes. The positive relationship between recruitment rate and allelic richness and expected heterozygosity, and the absence of significant correlations between genetic variation and population size suggest seedling recruitment from the seed bank, contributing to maintain genetic diversity. Long‐distance dye dispersal events indicate pollinator movements along urban forest path and road verges. These landscape elements might therefore have a potential conservation value by contributing to connectivity of early‐successional species populations located in patchy open habitats.  相似文献   

12.
The lifetime movements of an individual determine the gene flow and invasion potential of the species. However, sex dependence of dispersal and selective pressures driving dispersal have gained much more attention than dispersal at different life and age stages. Natal dispersal is more common than dispersal between breeding attempts, but breeding dispersal may be promoted by resource availability and competition. Here, we utilize mark–recapture data on the nest‐box population of Siberian flying squirrels to analyze lifetime dispersal patterns. Natal dispersal means the distance between the natal nest and the nest used the following year, whereas breeding movements refer to the nest site changes between breeding attempts. The movement distances observed here were comparable to distances reported earlier from radio‐telemetry studies. Breeding movements did not contribute to lifetime dispersal distance and were not related to variation in food abundance or habitat patch size. Breeding movements of males were negatively, albeit not strongly, related to male population size. In females, breeding movement activity was low and was not related to previous breeding success or to competition between females for territories. Natal philopatry was linked to apparent death of a mother; that is, we did not find evidence for mothers bequeathing territories for offspring, like observed in some other rodent species. Our results give an example of a species in which breeding movements are not driven by environmental variability or nest site quality. Different evolutionary forces often operate in natal and breeding movements, and our study supports the view that juveniles are responsible for redistributing individuals within and between populations. This emphasizes the importance of knowledge on natal dispersal, if we want to understand consequences of movement ecology of the species at the population level.  相似文献   

13.
Reproductive success is associated with age in many taxa, increasing in early life followed by reproductive senescence. In socially monogamous but genetically polygamous species, this generates the interesting possibility of differential trajectories of within‐pair and extra‐pair siring success with age in males. We investigate these relationships simultaneously using within‐individual analyses with 13 years of data from an insular house sparrow (Passer domesticus) population. As expected, we found that both within‐ and extra‐pair paternity success increased with age, followed by a senescence‐like decline. However, the age trajectories of within‐ and extra‐pair paternity successes differed significantly, with the extra‐pair paternity success increasing faster, although not significantly, in early life, and showing a delayed decline by 1.5 years on average later in life compared to within‐pair paternity success. These different trajectories indicate that the two alternative mating tactics should have age‐dependent pay‐offs. Males may partition their reproductive effort between within‐ and extra‐pair matings depending on their current age to reap the maximal combined benefit from both strategies. The interplay between these mating strategies and age‐specific mortality may explain the variation in rates of extra‐pair paternity observed within and between species.  相似文献   

14.
Dispersal, the behaviour ensuring gene flow, tends to covary with a number of morphological, ecological and behavioural traits. While species‐specific dispersal behaviours are the product of each species’ unique evolutionary history, there may be distinct interspecific patterns of covariation between dispersal and other traits (‘dispersal syndromes’) due to their shared evolutionary history or shared environments. Using dispersal, phylogeny and trait data for 15 terrestrial and semi‐terrestrial animal Orders (> 700 species), we tested for the existence and consistency of dispersal syndromes across species. At this taxonomic scale, dispersal increased linearly with body size in omnivores, but decreased above a critical length in herbivores and carnivores. Species life history and ecology significantly influenced patterns of covariation, with higher phylogenetic signal of dispersal in aerial dispersers compared with ground dwellers and stronger evidence for dispersal syndromes in aerial dispersers and ectotherms, compared with ground dwellers and endotherms. Our results highlight the complex role of dispersal in the evolution of species life‐history strategies: good dispersal ability was consistently associated with high fecundity and survival, and in aerial dispersers it was associated with early maturation. We discuss the consequences of these findings for species evolution and range shifts in response to future climate change.  相似文献   

15.
Adaptive divergence is a key mechanism shaping the genetic variation of natural populations. A central question linking ecology with evolutionary biology is how spatial environmental heterogeneity can lead to adaptive divergence among local populations within a species. In this study, using a genome scan approach to detect candidate loci under selection, we examined adaptive divergence of the stream mayfly Ephemera strigata in the Natori River Basin in northeastern Japan. We applied a new machine‐learning method (i.e., random forest) besides traditional distance‐based redundancy analysis (dbRDA) to examine relationships between environmental factors and adaptive divergence at non‐neutral loci. Spatial autocorrelation analysis based on neutral loci was employed to examine the dispersal ability of this species. We conclude the following: (a) E. strigata show altitudinal adaptive divergence among the populations in the Natori River Basin; (b) random forest showed higher resolution for detecting adaptive divergence than traditional statistical analysis; and (c) separating all markers into neutral and non‐neutral loci could provide full insight into parameters such as genetic diversity, local adaptation, and dispersal ability.  相似文献   

16.
Ecological and evolutionary processes influence community assembly at both local and regional scales. Adding a phylogenetic dimension to studies of species turnover allows tests of the extent to which environmental gradients, geographic distance and the historical biogeography of lineages have influenced speciation and dispersal of species throughout a region. We compare measures of beta diversity, phylogenetic community structure and phylobetadiversity (phylogenetic distance among communities) in 34 plots of Amazonian trees across white‐sand and clay terra firme forests in a 60 000 square kilometer area in Loreto, Peru. Dominant taxa in white‐sand forests were phylogenetically clustered, consistent with environmental filtering of conserved traits. Phylobetadiversity measures found significant phylogenetic clustering between terra firme communities separated by geographic distances of <200–300 km, consistent within recent local speciation at the watershed scale in the Miocene‐aged clay‐soil forests near the foothills of the Andes. Although both distance and habitat type yielded statistically significant effects on both species and phylogenetic turnover, the patterns we observed were more consistent with an effect of habitat specialization than dispersal limitation. Our results suggest a role for both broad‐scale biogeographic and evolutionary processes, as well as habitat specialization, influencing community structure in Amazonian forests.  相似文献   

17.
Aim The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ‘unidirectional dispersal hypothesis’ and is the genetic equivalent of the more generally known ‘drift paradox’. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location The Meuse River (Belgium) and rivers world‐wide. Methods First, we used amplified fragment length polymorphism markers to compare patterns of within‐ and between‐population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta‐analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta‐analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity.  相似文献   

18.
Dispersal is a critical factor determining the spatial scale of speciation, which is constrained by the ecological characteristics and distribution of a species’ habitat and the intrinsic traits of species. Endogean taxa are strongly affected by the unique qualities of the below‐ground environment and its effect on dispersal, and contrasting reports indicate either high dispersal capabilities favoured by small body size and mediated by passive mechanisms, or low dispersal due to restricted movement and confinement inside the soil. We studied a species‐rich endogean ground beetle lineage, Typhlocharina, including three genera and more than 60 species, as a model for the evolutionary biology of dispersal and speciation in the deep soil . A time‐calibrated molecular phylogeny generated from >400 individuals was used to delimit candidate species, to study the accumulation of lineages through space and time by species–area–age relationships and to determine the geographical structure of the diversification using the relationship between phylogenetic and geographic distances across the phylogeny. Our results indicated a small spatial scale of speciation in Typhlocharina and low dispersal capacity combined with sporadic long distance, presumably passive dispersal events that fuelled the speciation process. Analysis of lineage growth within Typhlocharina revealed a richness plateau correlated with the range of distribution of lineages, suggesting a long‐term species richness equilibrium mediated by density dependence through limits of habitat availability. The interplay of area‐ and age‐dependent processes ruling the lineage diversification in Typhlocharina may serve as a general model for the evolution of high species diversity in endogean mesofauna.  相似文献   

19.
Knowledge of the rate, distance and direction of dispersal within and among breeding areas is required to understand and predict demographic and genetic connectivity and resulting population and evolutionary dynamics. However dispersal rates, and the full distributions of dispersal distances and directions, are rarely comprehensively estimated across all spatial scales relevant to wild populations. We used re‐sightings of European Shags Phalacrocorax aristotelis colour‐ringed as chicks on the Isle of May (IoM), UK, to quantify rates, distances and directions of dispersal from natal to subsequent breeding sites both within IoM (within‐colony dispersal) and across 27 other breeding colonies covering 1045 km of coastline (among‐colony dispersal). Additionally, we used non‐breeding season surveys covering 895 km of coastline to estimate breeding season detection probability and hence potential bias in estimated dispersal parameters. Within IoM, 99.6% of individuals dispersed between their natal and observed breeding nest‐site. The distribution of within‐colony dispersal distances was right‐skewed; mean distance was shorter than expected given random settlement within IoM, yet some individuals dispersed long distances within the colony. The distribution of within‐colony dispersal directions was non‐uniform but did not differ from expectation given the spatial arrangement of nest‐sites. However, 10% of all 460 colour‐ringed adults that were located breeding had dispersed to a different colony. The maximum observed dispersal distance (170 km) was much smaller than the maximum distance surveyed (690 km). The distribution of among‐colony dispersal distances was again right‐skewed. Among‐colony dispersal was directional, and differed from random expectation and from the distribution of within‐colony dispersal directions. Non‐breeding season surveys suggested that the probability of detecting a colour‐ringed adult at its breeding location was high in the northeastern UK (98%). Estimated dispersal rates and distributions were therefore robust to incomplete detection. Overall, these data demonstrate skewed and directionally divergent dispersal distributions across small (within‐colony) and large (among‐colony) scales, indicating that dispersal could create genetic and demographic connectivity within the study area.  相似文献   

20.
Knowledge of dispersal in a species, both its quantity and the factors influencing it, are crucial for our understanding of ecology and evolution, and for species conservation. Here we quantified and formally assessed the potential contribution of extrinsic factors on individual dispersal in the threatened Tasmanian population of wedge‐tailed eagle Aquila audax. As successful breeding by these individuals appears strongly related to habitat, we tested the effect of landscape around sampling sites on genetic diversity and spatial genetic variation, as these are influenced by patterns of dispersal. Similarly, we also tested whether habitat intervening sampling sites could explain spatial genetic variation. Twenty microsatellites were scored, but only a small proportion of spatial genetic variation (4.6%) could be explained by extrinsic factors, namely habitat suitability and elevation between sites. However, significant clinal genetic variation was evident across Tasmania, which we explain by intrinsic factors, likely high natal philopatry and occasional long‐distance dispersal. This study demonstrates that spatial genetic variation can be detected in highly vagile species at spatial scales that are small relative to putative dispersal ability, although here there was no substantial relationship with landscape factors tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号