首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Golden‐headed lion tamarins (GHLTs; Leontopithecus chrysomelas) are endangered primates endemic to the Brazilian Atlantic Forest, where loss of forest and its connectivity threaten species survival. Understanding the role of habitat availability and configuration on population declines is critical for guiding proactive conservation for this, and other, endangered species. We conducted population viability analysis to assess vulnerability of ten GHLT metapopulations to habitat loss and small population size. Seven metapopulations had a low risk of extirpation (or local extinction) over the next 100 years assuming no further forest loss, and even small populations could persist with immediate protection. Three metapopulations had a moderate/high risk of extirpation, suggesting extinction debt may be evident in parts of the species’ range. When deforestation was assumed to continue at current rates, extirpation risk significantly increased while abundance and genetic diversity decreased for all metapopulations. Extirpation risk was significantly negatively correlated with the size of the largest patch available to metapopulations, underscoring the importance of large habitat patches for species persistence. Finally, we conducted sensitivity analysis using logistic regression, and our results showed that local extinction risk was sensitive to percentage of females breeding, adult female mortality, and dispersal rate and survival; conservation or research programs that target these aspects of the species’ biology/ecology could have a disproportionately important impact on species survival. We stress that efforts to protect populations and tracts of habitat of sufficient size throughout the species’ distribution will be important in the near‐term to protect the species from continuing decline and extinction.  相似文献   

2.
Fragmentation of grasslands and forests is considered a major threat to biodiversity. In the case of plants, the effect of fragmentation or landscape context is still unclear and published results are divergent. One explanation for this divergence is the slow response of long‐lived plants, creating an extinction debt. However, this has not been empirically confirmed. In this study, data were compiled from broad‐scale studies of grasslands from throughout the world that relate plant diversity to fragmentation effects. Only seven studies from northern Europe, out of a total 61, gave any information on actual habitat fragmentation in time and space. In landscapes with >10% grassland remaining, present‐day species richness was related to past landscape or habitat pattern. In landscapes with <10% grassland remaining, in contrast, plant species richness was more related to contemporary landscape or habitat pattern. Studies from landscapes with >10% grassland remaining supported the concept of an extinction debt, while studies from more fragmented landscapes did not provide any evidence of an extinction debt. In order to make generalisations about historical legacies on species diversity in grasslands it is important to consider a range of highly transformed landscapes, and not only landscapes with a high amount of grassland remaining.  相似文献   

3.
Leigh Van Valen famously stated that under constant conditions extinction probability is independent of species age. To test this 'law of constant extinction', we developed a new method using deep learning to infer age‐dependent extinction and analysed 450 myr of marine life across 21 invertebrate clades. We show that extinction rate significantly decreases with age in > 90% of the cases, indicating that most species died out soon after their appearance while those which survived experienced ever decreasing extinction risk. This age‐dependent extinction pattern is stronger towards the Equator and holds true when the potential effects of mass extinctions and taxonomic inflation are accounted for. These results suggest that the effect of biological interactions on age‐dependent extinction rate is more intense towards the tropics. We propose that the latitudinal diversity gradient and selection at the species level account for this exceptional, yet little recognised, macroevolutionary and macroecological pattern.  相似文献   

4.
The main aim of this paper is to address consequences of climate warming on loss of habitat and genetic diversity in the enigmatic tropical alpine giant rosette plants using the Ethiopian endemic Lobelia rhynchopetalum as a model. We modeled the habitat suitability of Lrhynchopetalum and assessed how its range is affected under two climate models and four emission scenarios. We used three statistical algorithms calibrated to represent two different complexity levels of the response. We analyzed genetic diversity using amplified fragment length polymorphisms and assessed the impact of the projected range loss. Under all model and scenario combinations and consistent across algorithms and complexity levels, this afro‐alpine flagship species faces massive range reduction. Only 3.4% of its habitat seems to remain suitable on average by 2,080, resulting in loss of 82% (CI 75%–87%) of its genetic diversity. The remaining suitable habitat is projected to be fragmented among and reduced to four mountain peaks, further deteriorating the probability of long‐term sustainability of viable populations. Because of the similar morphological and physiological traits developed through convergent evolution by tropical alpine giant rosette plants in response to diurnal freeze‐thaw cycles, they most likely respond to climate change in a similar way as our study species. We conclude that specialized high‐alpine giant rosette plants, such as L. rhynchopetalum, are likely to face very high risk of extinction following climate warming.  相似文献   

5.
  1. Habitat loss leading to smaller patch sizes and decreasing connectivity is a major threat to global biodiversity. While some species vanish immediately after a change in habitat conditions, others show delayed extinction, that is, an extinction debt. In case of an extinction debt, the current species richness is higher than expected under present habitat conditions.
  2. We investigated wetlands of the canton of Zürich in the lowlands of Eastern Switzerland where a wetland loss of 90% over the last 150 years occurred. We related current species richness to current and past patch area and connectivity (in 1850, 1900, 1950, and 2000). We compared current with predicted species richness in wetlands with a substantial loss in patch area based on the species‐area relationship of wetlands without substantial loss in patch area and studied relationships between the richness of different species groups and current and historical area and connectivity of wetland patches.
  3. We found evidence of a possible extinction debt for long‐lived wetland specialist vascular plants: in wetlands, which substantially lost patch area, current species richness of long‐lived specialist vascular plants was higher than would have been expected based on current patch area. Additionally and besides current wetland area, historical area also explained current species richness of these species in a substantial and significant way. No evidence for an extinction debt in bryophytes was found.
  4. The possible unpaid extinction debt in the wetlands of the canton of Zürich is an appeal to nature conservation, which has the possibility to prevent likely future extinctions of species through specific conservation measures. In particular, a further reduction in wetlands must be prevented and restoration measures must be taken to increase the number of wetlands.
  相似文献   

6.
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well‐studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat‐specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750 000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150 000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography.  相似文献   

7.
Whether there are ecological limits to species diversification is a hotly debated topic. Molecular phylogenies show slowdowns in lineage accumulation, suggesting that speciation rates decline with increasing diversity. A maximum‐likelihood (ML) method to detect diversity‐dependent (DD) diversification from phylogenetic branching times exists, but it assumes that diversity‐dependence is a global phenomenon and therefore ignores that the underlying species interactions are mostly local, and not all species in the phylogeny co‐occur locally. Here, we explore whether this ML method based on the nonspatial diversity‐dependence model can detect local diversity‐dependence, by applying it to phylogenies, simulated with a spatial stochastic model of local DD speciation, extinction, and dispersal between two local communities. We find that type I errors (falsely detecting diversity‐dependence) are low, and the power to detect diversity‐dependence is high when dispersal rates are not too low. Interestingly, when dispersal is high the power to detect diversity‐dependence is even higher than in the nonspatial model. Moreover, estimates of intrinsic speciation rate, extinction rate, and ecological limit strongly depend on dispersal rate. We conclude that the nonspatial DD approach can be used to detect diversity‐dependence in clades of species that live in not too disconnected areas, but parameter estimates must be interpreted cautiously.  相似文献   

8.
Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity‐dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2–21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity‐dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services.  相似文献   

9.
Aim Habitat loss and degradation pose a major threat to biodiversity, which can result in the extinction of habitat characteristic species. However, many species exhibit a delayed response to environmental changes because of the slow intrinsic dynamics of populations, resulting in extinction debt. We assess directly the changes in habitat characteristic species composition by comparing historical (1923) and current inventories in highly fragmented grasslands. We aim to characterize the species that constitute extinction debt in European calcareous grasslands. Location Europe, Estonia, 59–60° N, 24–25° E. Methods We related eleven life‐history traits and selected habitat preferences to local extinctions of populations in grasslands where extinction debt has been largely paid. Traits were chosen to describe species dispersal and persistence abilities and were quantified from databases. Results The studied grasslands have lost 90% of their area and 30% of their characteristic plant populations in 90 years. Species more prone to local population extinction were characterized by shorter life span, self‐pollination, a lack of clonal growth, fewer seeds per shoot, lower average height, lower soil nitrogen preference and higher requirements for light, indicating a limited ability to tolerate the range of changes in biotic and abiotic conditions of the sites. Locally extinct populations were also characterized by wind‐dispersed seeds, lower seed weight and lower terminal velocity of seeds, suggesting that species strategies for long‐distance dispersal are not favoured in highly fragmented landscapes. Thus, both increased habitat isolation and decreased habitat quality are important in determining local population extinction. Main conclusions Populations more prone to local extinction were characterized by a number of life‐history traits, demonstrating a greater extinction risk for species with poorer abilities for local persistence and competition. Our results can be applied to less degraded grasslands where the extinction debt is not yet paid to determine those species most susceptible to future extinction.  相似文献   

10.
Question: How will changing climate and habitat structure interact to control the species diversity of lichen epiphytes? Location: Scotland. Method: Species richness (=diversity) of the epiphyte lichen community known as Lobarion (named after Lobaria pulmonaria) was quantified for 94 Populus tremula stands across Scotland, and compared in a predictive model to seven climate variables and eight measures of woodland structure. An optimum model was selected and used to project Lobarion diversity over the geographic range of the study area, based on IPCC climate change scenarios and hypothetical shifts in woodland structure. Results: Species diversity of the Lobarion community was best explained by three climate variables: (1) average annual temperature; (2) autumn and winter precipitation; in combination with (3) historic‐woodland extent. Projections indicate a positive effect of predicted climate change on Lobarion diversity, consistent with the physiological traits of cyanobac‐terial lichens comprising the Lobarion. However, the general response to climate is modified significantly by the effect on diversity of historic‐woodland extent. Conclusions: Historic‐woodland extent may exert an important control over local climate, as well as impacting upon the metapopulation dynamics of species in the Lobarion. In particular, a temporal delay in the response of Lobarion species to changed woodland structure is critical to our understanding of future climate change effects. Future Lobarion diversity (e.g. in the 2050s) may depend upon the interaction of contemporary climate (e.g. 2050s climate) and historic habitat structure (e.g. 1950s woodland extent). This is supported by previous observations for an extinction debt amongst lichen epiphytes, but suggests an extension of simple climate‐response models is necessary, before their wider application to lichen epiphyte diversity.  相似文献   

11.
Habitat losses occur non-randomly within human-modified landscapes, resulting in high spatial heterogeneity of local habitat histories. Although local habitat history can modulate the existence of extinction debt (i.e., the number of populations predicted to become extinct) in a landscape, its role in detecting extinction debt has not been examined explicitly. We aimed to compare the detectability of extinction debt among populations of an endangered semi-natural grassland species, Echinops setifer (Compositae), in the grassland landscape of Mt. Aso, Japan. We classified populations into three groups that differed in local habitat history: stable (habitat loss ≤30% since the 1930s), moderately decreased (30% < loss ≤ 90%), and severely decreased (loss >90%). We then evaluated whether the effects of habitat areas during the 1930s and 2000s varied among groups to explain population size by GLMMs and estimated coefficient of explanatory variable by Bayesian MCMC methods. Within the groups, stable group showed significant positive relationships with both past and current habitat areas. The moderately decreased group only showed significant positive relationships with past habitat areas, indicating the existence of extinction debt in these populations. The severely decreased group only showed significant positive relationships with current habitat areas, indicating that they may have already paid their extinction debt because the rate of grassland loss exceeded the extinction threshold. Even within the same landscape, extinction debt varied in response to local habitat history. In spatially heterogeneous landscapes, evaluation of effects of local habitat history can elucidate the habitat-based extinction risks for plant populations.  相似文献   

12.
Habitat loss and fragmentation affect species richness in fragmented habitats and can lead to immediate or time‐delayed species extinctions. Asynchronies in extinction and extinction debt between interacting species may have severe effects on ecological networks. However, these effects remain largely unknown. We evaluated the effects of habitat patch and landscape changes on antagonistic butterfly larvae–plant trophic networks in Mediterranean grasslands in which previous studies had shown the existence of extinction debt in plants but not in butterflies. We sampled current species richness of habitat‐specialist and generalist butterflies and vascular plants in 26 grasslands. We assessed the direct effects of historical and current patch and landscape characteristics on species richness and on butterfly larvae–plant trophic network metrics and robustness. Although positive species‐ and interactions–area relationships were found in all networks, structure and robustness was only affected by patch and landscape changes in networks involving the subset of butterfly specialists. Larger patches had more species (butterflies and host plants) and interactions but also more compartments, which decreased network connectance but increased network stability. Moreover, most likely due to the rescue effect, patch connectivity increased host‐plant species (but not butterfly) richness and total links, and network robustness in specialist networks. On the other hand, patch area loss decreased robustness in specialist butterfly larvae–plant networks and made them more prone to collapse against host plant extinctions. Finally, in all butterfly larvae–plant networks we also detected a past patch and landscape effect on network asymmetry, which indicates that there were different extinction rates and extinction debts for butterflies and host plants. We conclude that asynchronies in extinction and extinction debt in butterfly–plant networks provoked by patch and landscape changes caused changes in species richness and network links in all networks, as well as changes in network structure and robustness in specialist networks.  相似文献   

13.
Population viability analysis is an important tool to assess the extinction risk in small populations of highly specialized primates. The blue‐eyed black lemur (Eulemur flavifrons) is critically endangered with a restricted range in the north‐western dry deciduous forest of Madagascar, where habitat fragmentation and loss of forest connectivity threaten its survival. We performed a population viability analysis (PVA) of this lemur in Ankarafa Forest in the Sahamalaza Peninsula National Park, north‐western Madagascar, to determine the demographic parameters most influential for population persistence and to assess extinction probabilities. We conducted PVA analyses using different demographic parameters which characterize the species including reproduction, lifespan and population size using the software VORTEX for six scenarios with 100 iterations and simulated over 100 years. The simulations suggested the first extinction within 13 years when the percentage of habitat destruction increased up to 12%. Severe habitat destruction such as fire and logging was the major cause which led to the risk of population extinction. Conservation strategies, in particular measures to reduce habitat destruction, are proposed to ensure the survival of this critically endangered lemur.  相似文献   

14.
Habitat loss leads to species extinctions, both immediately and over the long term as ‘extinction debt’ is repaid. The same quantity of habitat can be lost in different spatial patterns with varying habitat fragmentation. How this translates to species loss remains an open problem requiring an understanding of the interplay between community dynamics and habitat structure across temporal and spatial scales. Here we develop formulas that characterise extinction debt in a spatial neutral model after habitat loss and fragmentation. Central to our formulas are two new metrics, which depend on properties of the taxa and landscape: ‘effective area’, measuring the remaining number of individuals and ‘effective connectivity’, measuring individuals’ ability to disperse through fragmented habitat. This formalises the conventional wisdom that habitat area and habitat connectivity are the two critical requirements for long‐term preservation of biodiversity. Our approach suggests that mechanistic fragmentation metrics help resolve debates about fragmentation and species loss.  相似文献   

15.
The mass-extinction events caused by human-driven habitat loss are a current concern in conservation science. However, the observed number of extinctions is considerably smaller than predicted. The overestimation of extinction rates comes from the time-delay which depends on the species sensitivity to habitat changes. The standard method of predicting the effect of habitat loss on biodiversity is to use the species–area relationship and progressively following it backwards to smaller areas. The difference between the actual number of species and the one provided by the backwards species–area relationship is dubbed extinction debt. Previous studies in general adopt a static view for the spatial distribution of species. Nonetheless, a precise understanding of the problem urges us to adopt a dynamic framework to this issue since the time between disturbances of the landscape plays an active role in influencing the strength of the extinction debt. In this context, here we address two distinct approaches for this question: a static and a dynamic view of fragmentation. In the former we quantify the extinction debt in a quenched spatial distribution of species, whereas in the latter the community is let to evolve between disturbance events of the landscape. Here we show that the size of the extinction debt depends on the pattern of the fragmentation. It is found that random distributions of destroyed habitats provide larger extinction debts than those obtained for contiguous areas of fragmentation. Furthermore, in the dynamic approach it is observed that dispersal can lead to unexpected outcomes such as lower biodiversity levels than ones inferred from the backwards species–area relationship.  相似文献   

16.

Habitat loss and fragmentation would often induce delayed extinction, referred to as extinction debt. Understanding potential extinction debts would allow us to reduce future extinction risk by restoring habitats or implementing conservation actions. Although growing empirical evidence has predicted extinction debts in various ecosystems exposed to direct human disturbances, potential extinction debts in natural ecosystems with minimal direct human disturbance are little studied. Ongoing climate change may cause habitat loss and fragmentation, particularly in natural ecosystems vulnerable to environmental change, potentially leading to future local extinctions. Recent climate change would lead to extended growing season caused by earlier snowmelt in spring, resulting in expansion of shrubby species and thereby habitat loss and fragmentation of mountainous moorlands. We examined the potential extinction debts of species diversity and functional diversity (FD; trait variation or multivariate trait differences within a community) in subalpine moorland ecosystems subjected to few direct human disturbances. Plant species richness for all species and for moorland specialists were primarily explained by the past kernel density of focal moorlands (a proxy for spatial clustering of moorlands around them) but not the past area of the focal moorlands, suggesting potential extinction debt in subalpine moorland ecosystems. The higher kernel density of the focal moorland in the past indicates that it was originally surrounded by more neighborhood moorlands and/or had been locally highly fragmented. Patterns in current plant species richness have been shaped by the historical spatial configuration of moorlands, which have disappeared over time. In contrast, we found no significant relationships between the FD and historical and current landscape variables depicting each moorland. The prevalence of trait convergence might result in a less sensitive response of FD to habitat loss and fragmentation compared to that of species richness. Our finding has an important implication that climate change induced by human activities may threaten biodiversity in natural ecosystems through habitat loss and fragmentation.

  相似文献   

17.
Anthropogenic habitat fragmentation often restricts gene flow and results in small populations that are at risk of inbreeding. However, some endangered species naturally occupy patchy habitat where local population extinction and recolonization are normal. We investigated population fragmentation in the range‐restricted New Zealand small‐scaled skink (Oligosoma microlepis), documenting changes in habitat occupancy and analyzing mitochondrial, microsatellite, and morphological variation sampled across the geographical range of the species (approximately 100 km2). Small‐scaled skinks have a strong preference for rocky outcrops that exist in a mosaic of other habitat types. A metapopulation structure was indicated by both local extinction and colonization of new sites. We found relatively high mtDNA nucleotide site diversity within this narrow range (π = 0.004; 16S), evidence of inter‐patch gene flow, and no statistical support for inbreeding. Gene flow was limited by geographical distance, although the existence of pasture between habitat patches apparently has not prevented skink dispersal. Generalized linear models indicated an association between body size and location suggesting a local environmental influence on phenotype. Prior to human‐induced habitat modification, native forest probably separated preferred sites and, less than 2000 years ago, volcanic activity devastated much of the area currently occupied by O. microlepis. This skink appears able to re‐establish populations if other human‐linked factors such as agricultural intensification and introduced predators are limited. Although in contrast to expectations for a scarce and localized species living in a highly modified landscape, this lizard may have previously adapted to a dynamic, mosaic environment mediated by volcanism.  相似文献   

18.
Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among‐patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape‐scale. In this study, we used extensive field data from a fragmented, semi‐arid landscape in Israel to parameterize a multi‐species incidence‐function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics – the metacommunity, the mainland‐island, or the island communities type – best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch‐matrix study landscape is best represented as a system of highly isolated ‘island’ communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33–60% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.  相似文献   

19.
A sample of marine invertebrates from the Late Triassic Cassian Formation (north Italy) yielded one of the most diverse Early Mesozoic fossil assemblages ever reported (c. 170 species). The assemblage was found in basin clays, but was transported from nearby carbonate platforms as indicated by fragmentation, microbial encrustation and the presence of coated grains and ooids. Most of the specimens are small (< 1 cm) reflecting both, small adult sizes and size sorting during transport. Rarefaction analysis suggests that diversity of surface collection and bulk sampling is the same. However, rank abundance, species richness and taxonomic composition differ strongly according to sampling method. Low‐grade lithification of the sediments is the main reason that high diversity can be recognized, because it facilitates disaggregation and finding of small molluscs. Sample standardization shows that the studied assemblage is much more diverse than known Early Triassic assemblages. However, its diversity is similar to that of Anisian assemblages. This suggests that recovery from the end‐Permian mass‐extinction was quite advanced in the Middle Triassic and alpha‐diversity remained high until the Late Triassic. According to current models, Early Triassic and Anisian faunas match the niche overlap phase of recovery during which diversity is built up by increasing alpha‐diversity, whereas beta‐diversity rises slowly. Subsequently, habitat width of species contracts because of increasing competition, making beta‐diversity the principal drive of overall diversity increase. The diversity pattern of various Late Triassic Cassian associations meets the predictions for the transition from the niche overlap to the habitat contraction phase.: Triassic, Cassian Formation, palaeoecology, diversity, mollusc dominance.  相似文献   

20.
To evaluate the regional biogeographical patterns of West Indian native and nonnative herpetofauna, we derived and updated data on the presence/absence of all herpetofauna in this region from the recently published reviews. We divided the records into 24 taxonomic groups and classified each species as native or nonnative at each locality. For each taxonomic group and in aggregate, we then assessed the following: (1) multiple species–area relationship (SAR) models; (2) C‐ and Z‐values, typically interpreted to represent insularity or dispersal ability; and (3) the average diversity of islands, among‐island heterogeneity, γ‐diversity, and the contribution of area effect toward explaining among‐island heterogeneity using additive diversity partitioning approach. We found the following: (1) SARs were best modeled using the Cumulative Weibull and Lomolino relationships; (2) the Cumulative Weibull and Lomolino regressions displayed both convex and sigmoid curves; and (3) the Cumulative Weibull regressions were more conservative than Lomolino at displaying sigmoid curves within the range of island size studied. The Z‐value of all herpetofauna was overestimated by Darlington (Zoogeography: The geographic distribution of animals, John Wiley, New York, 1957), and Z‐values were ranked: (1) native > nonnative; (2) reptiles > amphibians; (3) snake > lizard > frog > turtle > crocodilian; and (4) increased from lower‐ to higher‐level taxonomic groups. Additive diversity partitioning showed that area had a weaker effect on explaining the among‐island heterogeneity for nonnative species than for native species. Our findings imply that the flexibility of Cumulative Weibull and Lomolino has been underappreciated in the literature. Z‐value is an average of different slopes from different scales and could be artificially overestimated due to oversampling islands of intermediate to large size. Lower extinction rate, higher colonization, and more in situ speciation could contribute to high richness of native species on large islands, enlarging area effect on explaining the between‐island heterogeneity for native species, whereas economic isolation on large islands could decrease the predicted richness, lowering the area effect for nonnative species. For most of the small islands less affected by human activities, extinction and dispersal limitation are the primary processes producing low species richness pattern, which decreases the overall average diversity with a large among‐island heterogeneity corresponding to the high value of this region as a biodiversity hotspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号