首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both intact cortical tissue and isolated cortical cells from the adrenal gland of the rat were analyzed for 6-keto-PGF, the hydrolysis metabolite of PGI2, using high-performance liquid chromatography and gas chromatography-mass spectrometry. 6-Keto-PGF was present in both incubations of intact tissue and isolated cells of the adrenal cortex, at higher concentrations than either PGF or PGE2. Thus, the cortex does not depend upon vascular components for the synthesis of the PGI2 metabolite. Studies in vitro, using isolated cortical cells exposed to 6-keto-PGF (10?6-10?4M), show that this PG does not alter cAMP levels or steroidogenesis. Cells exposed to PGI2 (10?6-10?4M), however, show a concentration-dependent increase of up to 4-fold in the levels of cAMP without altering corticosterone production. ACTH (5–200 μU/ml) increased cAMP levels up to 14-fold, and corticosterone levels up to 6-fold, in isolated cells. ACTH plus PGI2 produced an additive increase in levels of cAMP, however, the steroidogenic response was equal to that elicited by ACTH alone. Adrenal glands of the rat perfused in situ with PGI2 showed a small decrease in corticosterone production, whereas ACTH greatly stimulated steroid release. Thus, while 6-keto-PGF is present in the rat adrenal cortex, its precursor, PGI2, is not a steroidogenic agent in this tissue although it does stimulate the accumulation of cAMP.  相似文献   

2.
3.
PGI2 and 6-keto-PGF were converted to 6-methoxime-PGF (6-MeON-PGF) by treatment with methoxyamine HCl in acetate buffer. The formed 6-MeON-PGF was measured by radioimmunoassay. Antisera were raised in rabbits after immunization against 6-MeON-PGF-BSA conjugate. Diluted 1:20.000 to bind 50% of the tracer (3H-6-MeON-PGF, 100 Ci/mmol), the antiserum cross reacted 0.8% with PGE2, 1% with PGF and less than 0.2% with PGD2, PGF, PGF and TXB2. The radioimmunoassay was used to estimate release of PGI2 and 6-keto-PGF from chopped rabbit renal medulla and cortex incubated in Krebs-Ringer bicarbonate buffer (37°C, 30 min). The 6-keto-PGf radioimmunoassay was validated in biological samples by mass fragmentography. The chopped medulla (n=5) released 38±9 ng/g/min and the cortex (n=5) 4.7±2.0 ng/g/min, while the release of immunoreactive PGE2 (iPGE2) and iPGF was 171±26 and 74±13 ng/g/min from the medulla and 4.3±1.3 and 2.7±0.3 ng/g/min from the cortex, respectively. The results confirm previous findings, which indicate that in the renal medulla prostaglandin endoperoxides are mainly transformed to prostaglandins, while in the cortex transformation to PGI2 seems to be of greater relative importance.  相似文献   

4.
Injections of 1 mg PGI2 directly into the bovine corpus luteum significantly increased peripheral plasma progesterone concentrations within 5 min. Concentrations were higher in the PGI2-treated heifers than in saline-injected controls between 5 and 150 min and at 3.5, 4, 5, and 7 h post-treatment. Levels tended to remain elevated through 14 h. Saline and 6-keto-PGF were without effect on plasma progesterone levels. The luteotrophic effect of PGI2 was not due to alterations in circulating LH concentrations. An in vitro experiment assessed the effects of either PGI2 alone or in combination with LH on progesterone production by dispersed luteal cells. Progesterone accumulation over 2 h for control, 5 ng LH, 1 μg PGI2, 10 μg PGI2, and 10 μg PGI2 plus 5 ng LH averaged 99 ± 42, 353 ± 70, 152 ± 35, 252 ± 45, and 287 ± 66 ng/ml (n=4), respectively. Thus PGI2 has luteotrophic effects on the bovine CL both in vivo and in vitro.  相似文献   

5.
Immunoglobulins raised against 5,6-dihydro PGI2 crossreact with PGI2. When infused in vivo into the rat, these immunoglobulins are capable of I) neutralising the vasodepressor effects (bolus or continuous infusion) of exogenous PGI2, 2) blocking the catabolism of exogenous 3H-PGI2 and prolonging its life-time in the circulation (t12 approx 60 min) while that of 3H-PGE2 is unaffected, 3) trapping an endogenously produced substance which after extraction from blood and dissociation from the ligand-antibody complex, is immunoreactive with 6-keto PGF-specific antiserum. Yet the anti-5,6-dihydro PGI2 immunoglobulins have no effect on resting arterial blood pressure both in the normotensive and spontaneously hypertensive rat. These experiments indicate that endogenously produced PGI2 does not play a significant systemic role in blood pressure control although in combination with other vasodilators it could still participate in the regulation of vascular tone at a local level.  相似文献   

6.
The transformation of 6-keto-PGF to two prostacyclin metabolites, 2,3-dinor-6-keto-PGF (I) and 2,3-dinor-6,15-diketo-13,14-dihydro-PGF (II) by Mycobacterium rhodochrous UC-6176 is described. The finding that the bacterium oxidized 6-keto-PGF to the 6,15-diketo metabolite II shows that it contains 15-hydroxy prostaglandin dehydrogenase and Δ13 reductase enzyme systems.  相似文献   

7.
Mass fragmentography (MF) and high resolution gas chromatography with electron capture detection (HRGC-ECD) were used for measuring 6-keto-PGF, the stable hydrolysis product of prostacylin (PGI2) released by fresh rings of rat aorta, incubated in the absence of the precursors arachidonic acid or prostaglandin endoperoxide (PGH2). The incubation medium was acidified, extracted, chromatographed on silicic acid column and derivatized. Comparable results were obtained analyzing each sample by MF and HRGC-ECD. Both methods proved to be suitable in terms of sensitivity and specificity for the measurement of 6-keto-PGF produced by individual rat aortae.  相似文献   

8.
The urinary levels of 2,3-dinor-6-oxo-PGF (PGI2-M), a major metabolite of PGI2, are determined by the balance between the amount of PGI2 synthesized and the extent of its further metabolic oxidation. The purpose of the present study was to determine if the urinary excretion of PGI2-M can be used as a reliable index of the in vivo production of PGI2 in both normal Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). This involved the exclusion of differences in metabolism between these two strains of rats. In order to do so, we monitored the urinary excretion of PGI2-M during paired intravenous infusions of 6-oxo-PGF (the stable product of the spontaneous hydrolysis of PGI2) in conscious, unrestrained SHR and WKY rats aged 12–15 weeks, in doses ranging from 250 to 700 ng. In one experiment, PGI2 was infused instead of 6-oxo-PGF.The results of these experiments indicate that SHR and WKY rats are equal with regard to the transformation of 6-oxo-PGF and PGI2 into PGI2-M. For both groups, there is a good correlation between the amount of 6-oxo-PGF infused and the amount of PGI2-M excreted in urine. These observations confirm the validity of using the urinary levels of 2,3-dinor-6-oxo-PGF as an index of PGI2 production in both WKY and SHR. In addition, they support the conclusions drawn from our previous studies, namely that SHR do not produce more PGI2 than WKY rats in vivo, contrary to the situation prevailing in vitro.  相似文献   

9.
The present study evaluates the effect of dipyridamole and pentoxifylline, individually and in combination, on PGI2-like production and arachidonic acid metabolism of rat aorta “in vitro”. Pentoxifylline 100 μM and dipyridamole 92 and 184 μM increased PGI2-like activity, as measured by the platelet aggregation inhibitory capacity of the aortic ring incubates, by 71%, 46% and 60% respectively; a greater increase in PGI2-like activity was observed with the combination of the drugs than when they were used separately. This effect was observed even at the lowest doses assayed. In fact, dipyridamole 9.2 μM plus pentoxifylline 1 μM increased the PGI2-like activity by 30% while the individual increase was 4.5% and 10.6% respectively. To obtain more information on the effect of the dipyridamole-pentoxifylline combination on arachidonic acid metabolism, arteries were incubated with (1-14C) arachidonic acid, and the 6-keto-PGF and PGE2 quantified. Dipyridamole 92 μM plus pentoxifulline 1 and 10 μM increased 6-keto-PGF and PGE2 production by about 30% and 48% respectively while combination with pentoxifylline 100 μM increased the 6-keto-PGF 76.5% and the PGE2 50%. The possible biological effect and therapeutic implications of increased PGI2 production by the arteries due to the dipyridamole-pentoxifylline combination remains to be ascertained.  相似文献   

10.
Metabolism of [9-3H]-PGI2 was studied in the isolated Tyrode's perfused rabbit liver. Five products, four radioactive and one non-radioactive, were identified in the perfusate: 19-hydroxy-6-keto-PGF, 6-keto-PGF, dinor-6-keto-PGF, pentanor PGF and a 6-keto-PGE1-like substance. The first two, 19-hydroxy-6-keto-PGF and 6-keto-PGF, represented 5% and 45% respectively, of the total radioactivity; the last two accounted for 39%. The presence of dinor and pentanor derivatives of 6-keto-PGF indicated that β -oxidation and oxidative-decarboxylation occurs in the liver as the major metabolic pathway of PGI2. One non-radioactive metabolite which co-migrated with authentic 6-keto-PGE1 was found to inhibit platelet aggregation, having a potency similar to authentic 6-keto-PGE1, and its effect can be eliminated by boiling and by alkali treatment. This metabolite, having similar Rf value on TLC and biological behavior as 6-keto-PGE1, may arise from oxidation of 6-keto-PGF via the 9-hydroxyprostaglandin dehydrogenase pathway, as suggested by recovery of tritiated water in the aqueous phase of the perfusate. This material, a potent inhibitor of platelet aggregation, may arise from PGI2 or its hydrolysis product, 6-keto-PGF.  相似文献   

11.
Prostacyclin alternatively called prostaglandin (PG) I2 is an unstable metabolite synthesized by the arachidonate cyclooxygenase pathway. Earlier studies have suggested that prostacyclin analogues can act as a potent effector of adipose differentiation. However, biosynthesis of PGI2 has not been determined comprehensively at different life stages of adipocytes. PGI2 is rapidly hydrolyzed to the stable product, 6-keto-PGF, in biological fluids. Therefore, the generation of PGI2 can be quantified as the amount of 6-keto-PGF. In this study, we attempted to develop a solid-phase enzyme-linked immunosorbent assay (ELISA) using a mouse antiserum specific for 6-keto-PGF. According to the typical calibration curve of our ELISA, 6-keto-PGF can be quantified from 0.8 pg to 7.7 ng in an assay. The evaluation of our ELISA revealed the higher specificity of our antiserum without the cross-reaction with other related prostanoids while it exhibited only the cross-reaction of 1.5 % with PGF. The resulting ELISA was applied to the quantification of 6-keto-PGF generated endogenously by cultured 3T3-L1 cells at different stages. The cultured cells showed the highest capability to generate 6-keto-PGF during the maturation phase of 4–6 days, which was consistent with the coordinated changes in the gene expression of PGI synthase and the IP receptor for PGI2. Following these events, the accumulation of fats was continuously promoted up to 14 days. Thus, our immunological assay specific for 6-keto-PGF is useful for monitoring the endogenous levels of the unstable parent PGI2 at different life stages of adipogenesis and for further studies on the potential association with the up-regulation of adipogenesis in cultured adipocytes.  相似文献   

12.
We have compared the production of prostaglandins in fibroblast-like cells and endothelial cells in culture. Of the fibroblasts studied 10T12, SHE, BP6T and KD produce significant amounts of PGI2, PGE2 and PGF2F2 under optimal culture conditions, but only 3T3 and BHK produce TxA2 in addition to PGI2. The adult bovine aortic endothelial cells (ABAE) and fetal bovine heart endothelium (FBHE) synthesise PGI2 but not TxA2, either from endogenous or exogenous substrates. Both cultured endothelial cells and fibroblasts apparently lack 15-hydroxyprostaglandin dehydrogenase pathway and the ability to convert 6-Keto PGF into 6-Keto PGE1. PGI2 production by ABAE was 3–5 times that of FBHE, about twice that of SHE cells and 6–8 times that of 10T12 or BP6T cells. Supernatants or media obtained from these cells inhibited aggregation of human platelet-rich plasma, a known biological effect of PGI2. This effect was abolished when cell monolayers were preincubated with indomethacin or tranylcypromine. RIA and chromatographic data of 6-Keto PGF from these experiments confirmed that the inhibition of platelet aggregation was due to the formation of PGI2. The production of all prostanoids by endothelial cells or fibroflasts was significantly higher during the exponential phase of growth as compared to confluent monolayers. We propose that fibroblasts 10T12 or SHE can serve as useful experimental models for the study of metabolism and transport of PGI2 and/or TxA2 in cells of nonendothelial nature.  相似文献   

13.
The ability of aortae from young and mature swine to produce prostacyclin (PGI2) has been determined. PGI2 was measured as its hydration product, 6-keto-PGF and assayed by stable isotope dilution GC-MS. There was no significant difference in 6-keto-PGF production between intimal strips from young and mature aortae in the basal state. In the presence of saturating concentrations of arachidonic acid, however, intimal strips from young aortae synthesized twice as much 6-keto-PGF as did older tissues. Fatty acid compositions of young and mature aortae were virtually identical, making dietary differences an unlikely explanation for the age-related decrease in PGI2 synthesis. Both young and mature vascular tissues produced essentially only PGI2; insignificant amounts of PGE2 and PGF were found.  相似文献   

14.
The metabolism of endogenous PGI2 (released by angiotensin II or bradykinin) and exogenous PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was studied in five different vascular beds of the anaesthetized cat. Plasma concentrations of 6-keto-PGF (the product of spontaneous hydrolysis of PGI2) and 6,15-diketo-13,14-dihydro-PGF (the metabolite formed from PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase) were determined in the efferent vessels of the respective vascular beds by specific radioimmunoassays.No major metabolism of PGI2 by 15-hydroxy-PG-dehydrogenase and Δ13-reductase was detected in the head and the hindlimbs of the cat. In the lung exogenous (circulating) PGI2 was not metabolized, whereas PGI2 synthetized in the lung itself was converted to 6,15-diketo-13,14-dihydor-PGF. No significant amounts of 6,15-diketo-13,14-dihydro-PGF-immunoreactivity were detected in hepatic venous blood after infusion of PGI2 into the portal vein. However as also no 6-keto-PGF was found, the liver seems to efficiently extract PGI2 from the circulation. The cat kidney had the highest capacity of all vascular beds investigated to release endogenous and exogenous PGI2 as 6-15-diketo-13,14-dihydro-PGF. In other organs (vascular beds) investigated PGI2 is either metabolized less efficiently by the 15-hydroxy-PG-dehydrogenase or further transformed to other metabolites.  相似文献   

15.
Levels of PGE2, PGF, PGI2 (measured as 6-keto-PGF), and thromboxane B2 were determined in rat inflammatory exudates induced 1, 3, and 7 days after carrageenin injection into air-pouch granuloma. The PGE2 and 6-keto-PGF levels found in the exudate could not account for the differences in PGE2-like activity as measured by biologic and serologic methods.  相似文献   

16.
Thromboxane B2, 6-keto-Prostaglandin F, and Prostaglandin E2 release have been quantitated from cultured adult by bovine endothelial cell monolayers and from ex Vivo vascular segments employing specific radioimmunoassay and thin layer chromatography. Release of all three prostaglandins was demonstrable from both endothelial cell systems under basal conditions and following exposure to the ionophore A23187 and arachidonic acid. In culture, the quantity of 6-keto-PGF released was diminished compared to amounts released from the vessel segments while thromboxane B2 and prostaglandin E2 release were similar in the two endothelial model systems. However, the amount of thromboxane B2 assayed was small and the quantity of thromboxane A2 it represents is probably of little in Vivo significance to prostacyclin.  相似文献   

17.
The initiation of blastocyst implantation in the rat is indicated by localized increases in endometrial vascular permeability at the sites where blastocysts are present. The concentrations of 6-keto-prostaglandin F (6-keto-PGF), a stable metabolite of prostaglandin I2 (PGI2), were measured by gas chromatography-mass spectrometry in the areas of increased endometrial vascular permeability (uterine dye sites), and compared with those in the remainder of the uterus (uterine non-dye sites). For rats killed either on the evening of Day 5 of pregnancy or on the morning of Day 6, measurable amounts of 6-keto-PGF were found in the dye sites of all animals, whereas 1 of 6 and 4 of 6 rats killed on Days 5 and 6, respectively, had undetectable amounts (< 1 ng) in non-dye site tissue. It was estimated that, on average, the concentration of 6-keto-PGF in dye sites on the evening of Day 5 is at least 40-fold that in non-dye sites. The possible role of PGI2 in the initiation of blastocyst implantation is discussed.  相似文献   

18.
Prostaglandin E2 (PGE2) and 6 keto-PGF, the stable metabolite of prostacyclin (PGI2), have been measured in the effluent of perfused rat mesenteric arteries by the use of a sensitive and specific radioimmunoadday (RIA) method. The PGE2 and 6-keto-PGF were continuousyl released by the unstimulated mesenteric artery over a period of 145 min. After 100 min of perfusion the release of PGE2 and 6-keto-PGF was 4.5 ± 8.4 pg/min and 254 ± 75 pg.min respectively, which is in accord with the general belief that PGI2 is the major PG synthesized by arterial tissue. Angiotensin II (AII) 5 ng/ml) induced an increased of PGE2 and 6-keto-PGF release without changing the perfusion pressure. The effect of norepinephrine (NE) injections on release of PGs depended on the duration of the stabilization period. The changes of perfusion pressure induced by NE were not related to changes in release of PGs. Thus, it seems that the increase of PG release induced by AII and NE was due to a direct effect of the drugs on the vascular wall. This may represent an important modulating mechanism in the regulation of vascular tone.  相似文献   

19.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF; 13, 14-diOH-15-keto-PGF; 6-keto-PGF and 6-keto-PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF was shifted to the right of that for PGF itself; the curve for 6-keto-PGF was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left.It was also demonstrated that the uterine motility elicited by 10−5 M PGF and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2; 6-keto-PGF and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF; 15-keto-PGF; 13, 14-diOH-15-keto-PGF and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF or BaCl2 fluctuated during the same period around more constant levels.The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

20.
The effect of PGE2, PGI2, and 6-keto-PGF respectively on the contractile response of the isolate , field-stimulated guinea pig vas deferens was investigated. All three PGs were capable of inhibiting the contractile responses of the vas deferens, but the concentrations required varied considerably: PGE2 was about 700 times more active than PGI2 and about 4600 times more active than 6-keto-PGF in this respect. It is suggested that PGI2, although formed in tissues with sympathetic innervation, does not play a physiological role as inhibitor of sympathetic transmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号