首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
At a low pH, the influenza virus hemagglutinin (HA) undergoes conformational changes that promote membrane fusion. While the critical role of fusion peptide release from the trimer interface has been demonstrated previously, the role of globular head dissociation in the overall fusion mechanism remains unclear. To investigate this question, we have analyzed in detail the fusion activity and low pH-induced conformational changes of a mutant, Cys-HA, in which the globular head domains are locked together by engineered intermonomer disulfide bonds (L. Godley, J. Pfeifer, D. Steinhauer, B. Ely, G. Shaw, R. Kaufmann, E. Suchanek, C. Pabo, J. J. Skehel, D. C. Wiley, and S. Wharton, Cell 68:635-645, 1992). In this paper, we show that Cys-HA expressed on the cell surface is predominantly a disulfide-bonded trimer. Cell surface Cys-HA is impaired in its membrane fusion activity, as demonstrated by both content-mixing and lipid-mixing fusion assays. It is also impaired in its ability to change conformation at a low pH, as assessed by proteinase K sensitivity. The fusion activity and low pH-induced conformational changes of cell surface Cys-HA are, however, restored to nearly wild-type levels upon reduction of the intermonomer disulfide bonds. By using a set of conformation-specific monoclonal and anti-peptide antibodies, we found that purified Cys-HA trimers are impaired in changes that occur in the globular head domain interface. In addition, changes that occur at a great distance from the engineered intermonomer disulfide bonds, notably release of the fusion peptides, are also impaired. Our results are discussed with respect to current views of the fusion-active conformation of the HA trimer.  相似文献   

2.
H Akutsu  T Nagamori 《Biochemistry》1991,30(18):4510-4516
The conformation of the polar head group of phosphatidylcholine in a bilayer in the liquid-crystalline state was deduced by analyzing the deuterium quadrupole splittings of the choline group and the phosphorus chemical shift anisotropy of the phosphate group in combination with the restriction of the choline conformation determined in laser Raman studies. The latter efficiently reduced the number of candidates for the actual conformation. A family of conformations was obtained for both the dynamic-structure and rigid-structure models, respectively. The polar head group is oriented roughly parallel to the membrane surface in both models. Furthermore, they are close to conformation A of the crystal structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The dynamic-structure model was concluded to be more reasonable in view of the fact that the polar head-group structures in most crystals comprise two conformations, which are nearly mirror images of each other. Conformational analysis was also carried out for the polar head group in the presence of multivalent cations. A possible conformational change of the polar head group induced by cations is discussed in the light of the present results.  相似文献   

3.
Peptides embedded in the sequence of pre-pro-nociceptin, i.e. nociceptin, nocistatin and orphanin FQ2, have shed light on the complexity of the mechanisms involving the peptide hormones related to pain and have opened up new perspectives for the clinical treatment of pain. The design of new ligands with high selectivity and bioavailability, in particular for ORL1, is important both for the elucidation and control of the physiological role of the receptor and for their therapeutic importance. The failure to obtain agonists and antagonists when using, for nociceptin, the same substitutions that are successful for opioids, and the conformational flexibility of them all, justify systematic efforts to study the solution conformation under conditions as close as possible to their natural environment. Structural studies of linear peptides in solution are hampered by their high flexibility. A direct structural study of the complex between a peptide and its receptor would overcome this difficulty, but such a study is not easy since opioid receptors are membrane proteins. Thus, conformational studies of lead peptides in solution are still important for drug design. This review deals with conformational studies of natural pre-nociceptin peptides in several solvents that mimic in part the different environments in which the peptides exert their action. None of the structural investigations yielded a completely reliable bioactive conformation, but the global conformation of the peptides in biomimetic environments can shed light on their interaction with receptors.  相似文献   

4.
Virtual and solution conformations of oligosaccharides   总被引:3,自引:0,他引:3  
D A Cumming  J P Carver 《Biochemistry》1987,26(21):6664-6676
The possibility that observed nuclear Overhauser enhancements and bulk longitudinal relaxation times, parameters measured by 1H NMR and often employed in determining the preferred solution conformation of biologically important molecules, are the result of averaging over many conformational states is quantitatively evaluated. Of particular interest was to ascertain whether certain 1H NMR determined conformations are "virtual" in nature; i.e., the fraction of the population of molecules actually found at any time within the subset of conformational space defined as the "solution conformation" is vanishingly small. A statistical mechanics approach was utilized to calculate an ensemble average relaxation matrix from which (NOE)'s and (T1)'s are calculated. Model glycosidic linkages in four oligosaccharides were studied. The solution conformation at any glycosidic linkage is properly represented by a normalized, Boltzmann distribution of conformers generated from an appropriate potential energy surface. The nature of the resultant population distributions is such that 50% of the molecular population is found within 1% of available microstates, while 99% of the molecular population occupies about 10% of the ensemble microstates, a number roughly equal to that sterically allowed. From this analysis we conclude that in many cases quantitative interpretation of NMR relaxation data, which attempts to define a single set of allowable torsion angle values consistent with the observed data, will lead to solution conformations that are either virtual or reflect torsion angle values possessed by a minority of the molecular population. On the other hand, calculation of ensemble average NMR relaxation data yields values in agreement with experimental results. Observed values of NMR relaxation data are the result of the complex interdependence of the population distribution and NOE (or T1) surfaces in conformational space. In conformational analyses, NMR data can therefore be used to test different population distributions calculated from empirical potential energy functions.  相似文献   

5.
The deuterated phospholipid, 1,2-dipalmitoyl-d62-phosphatidylcholine is shown by Raman spectroscopic measurements to be useful for obtaining information concerning phospholipid conformation in complex phospholipid and lipidprotein mixtures. The Raman bands of the deuterated phospholipid are assigned, and the sensitivity of these vibrational modes to conformational changes in the bilayer is demonstrated. Deuteration of the alkyl chains reveals the CH vibrations of the head group. A change in these bands is observed at the melting temperature and is assigned to alteration of the glycerol backbone conformation upon melting.  相似文献   

6.
The perturbations of the conformation of human deoxyhemoglobin induced by the covalent attachment of glutathione at cysteine beta 93 have been investigated by computer simulation in conjunction with molecular graphics. In the first phase of the analysis, a systematic search was carried out of the conformational space of glutathione attached to deoxyhemoglobin. In this search, the conformation of the hemoglobin molecule was held constant, while the relative energies of a series of 186,624 glutathione conformations involving systematic variation of six dihedral angels were calculated. From this search, the most favorable conformation was selected as the starting conformation for energy minimization of the glutathionyl hemoglobin molecule as a function of all Cartesian coordinates. In order to provide a reference state, an independent minimization by the same procedures was carried out for deoxyhemoglobin in the absence of glutathione. Comparison of the minimized structures with and without glutathione attached revealed a number of significant differences. The most conspicuous difference in the protein moiety concerned the salt bridge between aspartate beta 94 and histidine beta 146 which is destabilized upon minimization of the glutathionyl-hemoglobin complex due to interactions of the aspartate residue with the glycyl NH group of glutathione. Other observed differences in the minimized structures are located at the alpha 1-beta 2 interface and include displacement of the carboxyl group of aspartate beta 99. In the minimized complex, the glutathione portion assumes a quasi-cyclic conformation stabilized through interactions between the free (gamma-glutamyl) amino and (glycyl) carboxyl ends of the tripeptide and between this carboxyl end and the epsilon amino group of lysine alpha 40. In a parallel conformational study of glutathione alone, a similar structure was found as the lowest energy form. These quasi-cyclic conformations contrast with the extended structures reported by Wright (Wright, W.B. (1955) Acta Crystallogr. 11, 632-642) for crystals of glutathione where interactions between molecules play a major role. The conclusions of our analysis are in agreement with the experimental investigations reported in the two preceding papers and permit, moreover, a coherent interpretation of the observed functional and structural changes in deoxyhemoglobin induced by glutathione.  相似文献   

7.
Bilayers containing phosphatidylcholine (PC) and the anionic lipid phosphatidic acid (PA) are particularly effective at stabilizing the nicotinic acetylcholine receptor (nAChR) in a functional conformation that undergoes agonist-induced conformational change. The physical properties of PC membranes containing PA are also substantially altered upon incorporation of the nAChR. To test whether or not the negative charge of PA is responsible for this "bi-directional coupling," the nAChR was reconstituted into membranes composed of PC with varying levels of the net negatively charged lipid phosphatidylserine (PS). In contrast to PA, increasing levels of PS in PC membranes do not stabilize an increasing proportion of nAChRs in a functional resting conformation, nor do they slow nAChR peptide hydrogen exchange kinetics. Incorporation of the nAChR had little effect on the physical properties of the PC/PS membranes, as monitored by the gel-to-liquid crystal phase transition temperatures of the bilayers. These results show that a net negative charge alone is not sufficient to account for the unique interactions that occur between the nAChR and PC/PA membranes. Incorporation of the receptor into PC/PS membranes, however, did lead to an altered head group conformation of PS possibly by recruiting divalent cations to the membrane surface. The results show that the nAChR has complex and unique interactions with both PA and PS. The interactions between the nAChR and PS may be bridged by divalent cations, such as calcium.  相似文献   

8.
The physical properties of bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the presence of four water-soluble polyhydroxyl compounds, trehalose, sorbitol, glycerol, and ethyleneglycol, and three neutral glycolipids - monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and nonhydroxy fattyacyl-cerebrosides (NHFA-Cer) - were investigated using 2H-NMR. All four polyhydroxyl compounds induced small, but comparable concentration-dependent changes in the choline headgroup conformation which were consistent with the presence of a small negative charge being conferred upon the bilayer surface. The latter may be explained by dipolar interactions brought about by changes in the long-range order of the water layer at the membrane surface. Trehalose had a small ordering effect on the hydrophobic interior of the membrane while ethyleneglycol induced a disordering, at both the head group level and in the hydrophobic interior. The presence of high amounts of carbohydrate at the membrane surface was ensured when POPC was mixed with various proportions of one of three glycolipids, MGDG, DGDG and NHFA-Cer. In these cases the conformation of the choline headgroup was only marginally altered when not masked by macroscopic phase changes. The headgroup conformational changes observed in the presence of any of the above-mentioned compounds were modest in comparison to the effects induced by charged substances.  相似文献   

9.
B Ma  R Nussinov 《Proteins》1999,37(1):73-87
The conformational properties of a beta-hairpin peptide (YITNSDGTWT) were studied by using both explicit and implicit water simulations. The conformational space of the peptide was scanned by using a restricted hydrogen-bonding search method. The search method used generated the conformational space with enough diversity and good representation of beta-hairpin structures. By using a total surface area-based treatment of hydrophobic interactions, implicit water simulations failed to discriminate between experimental beta-hairpin structures from the rest of the conformers present in the authors' conformation library. However, with inclusion of vibrational free energy and accounting separately for polar and nonpolar surface areas, the nuclear magnetic resonance structure was ranked successfully as the most stable conformation. There is a loose correlation between the conformational energies by the continuum model and the conformational energies by explicit water simulation for conformers with similar structures. However, in terms of solvation energy, both approaches have a much better correlation. By using proper treatment of surface effect (partition of the surface area into polar and nonpolar areas) and including vibrational free-energy contribution, the continuum models should be reliable. Furthermore, the authors found that, for this peptide, beta-hairpin structures have large vibrational entropy that contributes decisively to the stability of folded beta-hairpin structures. Proteins 1999;37:73-87.  相似文献   

10.
It has been established that a long DNA molecule exhibits a large discrete conformational change from a coiled state to a highly folded state in aqueous solution, depending on the presence of various condensing agents such as polyamines. In this study, T4 DNA labeled with fluorescent dyes was encapsulated in a cell-sized microdroplet covered with a phospholipid membrane to investigate the conformational behavior of a DNA molecule in such a confined space. Fluorescence microscopy showed that the presence of Mg2+ induced the adsorption of DNA onto the membrane inner-surface of a droplet composed of phosphatidylethanolamine, while no adsorption was observed onto a phosphatidylcholine membrane. Under the presence of spermine (tetravalent amine), DNA had a folded conformation in the bulk solution. However, when these molecules were encapsulated in the microdroplet, DNA adsorbed onto the membrane surface accompanied by unfolding of its structure into an extended coil conformation under high concentrations of Mg2+. In addition, DNA molecules trapped in large droplets tended not to be adsorbed on the membrane, i.e., no conformational transition occurred. A thermodynamic analysis suggests that the translational entropy loss of a DNA molecule that is accompanied by adsorption is a key factor in these phenomena under micrometer-scale confinement.  相似文献   

11.
Tjong SC  Wu PL  Wang CM  Huang WN  Ho NL  Wu WG 《Biochemistry》2007,46(43):12111-12123
The major cardiotoxin from Taiwan cobra (CTX A3) is a pore forming beta-sheet polypeptide that requires sulfatide (sulfogalactosylceramide, SGC) on the plasma membrane of cardiomyocytes for CTX-induced membrane leakage and cell internalization. Herein, we demonstrate by fluorescence spectroscopic studies that sulfatides induce CTX A3 oligomerization in sulfatide containing phosphatidylcholine (PC) vesicles to form transient pores with pore size and lifetime in the range of about 30 A and 10(-2) s, respectively. These values are consistent with the CTX A3-induced conductance and mean lifetime determined previously by using patch-clamp electrophysiological experiments on the plasma membrane of H9C2 cells. We also derived the peripheral binding structural model of CTX A3-sulfatide complex in sulfatide containing PC micelles by NMR and molecular docking method and compared with other CTX A3-sulfatide complex structure determined previously by X-ray in membrane-like environment. The NMR results indicate that sulfatide head group conformation changes from a bent shovel (-sc/ap) to an extended (sc/ap) conformation upon initial binding of CTX A3. An additional global reorientation of sulfatide molecule is also needed for CTX A3 dimer formation as inferred by the difference between the X-ray and NMR complex structure. Since the overall folding of CTX A3 molecules remained the same, sulfatide in phospholipid bilayer is proposed to play an active role by involving its local and global conformational changes to promote both the oligomerization and reorientation of CTX A3 molecule for its transient pore formation and cell internalization.  相似文献   

12.
Mitochondrial resealing after the opening of the permeability transition (PT) pore was studied in saline- and sugar-based media by following the fluorescence anisotropy changes of mitochondria-bound hematoporphyrin (HP), a probe sensitive to conformational variations of the pore complex [Biochemistry 38 (1999) 9300]. The HP anisotropy changes correlated well with complete mitochondrial resealing in saline media and suggested that the pore complex regained the native structure after closure. Rebuilding of the pore complex structure was also achieved in monosaccharide-based media, thus ruling out a major influence of the swollen state of mitochondria on the reconstitution properties of the pore components. On the contrary, when sucrose or other disaccharides were used as osmotic support, restoration of the native mitochondrial structure, as monitored by HP anisotropy, was not achieved, though the proton barrier of the inner membrane and respiration functions were reestablished. Infrared spectroscopy experiments indicated the occurrence of strong perturbations of the mitochondrial membrane structure after disaccharide entrapment in the matrix space. These data suggest that mitochondria are able to reseal and regain functional activity after opening of the PT pore irrespective of the incubation medium but in sucrose (and other disaccharides) the pore complex adopts a conformation different from that existing before permeabilization. In general, our data indicate that the pore complex can exist in different conformations which are modulated by the nature of the interactions with the medium cosolvents.  相似文献   

13.
The different conformations of the outer membrane protein OmpF of Escherichia coli B were studied with immunological probes. The antigenic determinants recognized by one monoclonal (MoF3) and two polyclonal antibodies were investigated under various conditions of solubilization which modify the association of OmpF with other membrane components, such as lipopolysaccharide. Several polymeric forms of the protein could be detected after extraction at 37 degrees C or 56 degrees C. The monoclonal antibody, which is specific to an exposed region of native OmpF, recognized various trimeric forms in an immunoprecipitation assay. Under the same conditions, the binding of polyclonal antibodies apparently induced strong conformational rearrangements, since the pattern of trimeric forms detected was greatly modified. The conversion of newly synthesized monomers of OmpF to the various trimer forms was investigated using these antibodies. The trimerization occurred rapidly but the appearance of the native conformation of OmpF was delayed. Some additional step was required to expose the MoF3-specific antigenic site at the surface of the trimeric form. These results are discussed in relation to the structure of OmpF and its association with lipopolysaccharide in the outer membrane.  相似文献   

14.
Lipid-water interface mediates reversible ionophore conformational change   总被引:1,自引:0,他引:1  
A new procedure of conformational analysis was used to demonstrate that the ionophore conformation is mediated by its membrane environment. In the hydrophobic lipid matrix, the ionomycin-Ca++ complex adopts a conformation well suited for translocation across the interior of the membrane whereas at the lipid-water interface, the Ca++ ion is immersed into the aqueous phase in a position favorable to its complexation or decomplexation. The translocation of Ca++ across the lipid bilayer supposes a reversible transformation of the two conformers. The conformational analysis shows how the dielectric constant discontinuity existing at the lipid-water interface mediates the reversible transformation of one structure into the other.  相似文献   

15.
B Mao 《Biophysical journal》1991,60(3):611-622
Atomic motions in protein molecules have been studied by molecular dynamics (MD) simulations; dynamics simulation methods have also been employed in conformational studies of polypeptide molecules. It was found that when atomic masses are weighted, the molecular dynamics method can significantly increase the sampling of dihedral conformation space in such studies, compared to a conventional MD simulation of the same total simulation time length. Herein the theoretical study of molecular conformation sampling by the molecular dynamics-based simulation method in which atomic masses are weighted is reported in detail; moreover, a numerical scheme for analyzing the extensive conformational sampling in the simulation of a tetrapeptide amide molecule is presented. From numerical analyses of the mass-weighted molecular dynamics trajectories of backbone dihedral angles, low-resolution structures covering the entire backbone dihedral conformation space of the molecule were determined, and the distribution of rotationally stable conformations in this space were analyzed quantitatively. The theoretical analyses based on the computer simulation and numerical analytical methods suggest that distinctive regimes in the conformational space of the peptide molecule can be identified.  相似文献   

16.
V H Tran  J W Brady 《Biopolymers》1990,29(6-7):961-976
Constrained conformational energy minimizations have been used to calculate an adiabatic (phi, psi) potential energy surface for the disaccharide sucrose. The inclusion of molecular flexibility in the conformational energy analysis of this disaccharide was found to have a significant effect upon the allowed conformational space of the molecule. Three low-energy regions were identified on the adiabatic energy surface, and two of these regions were found to contain two related local minimum-energy conformations, with similar energies, differing only in the directionality of the intra-residue hydrogen bonds of the glucose portion of the molecule. The known crystal structures of seven molecules containing the sucrose moiety all fall within the region of the primary allowed minimum and are consistent with the relaxed energy map, while these crystal conformations could not be rationalized using energy maps for rigid residue geometries. The greater flexibility of the furanoid ring relative to that of the pyranoid ring contributed significantly to the enlargement of the low-energy region on the adiabatic map. However, in spite of the importance of limited flexibility in understanding the conformation and fluctuations of sucrose, this molecule was found to be considerably more rigid that some other disaccharides, such as maltose and cellobiose, in accord with experimental studies.  相似文献   

17.
Glycolipids, glycoproteins, glycosaminoglycans and sialoglycoproteins have all been implicated in a number of developmentally significant processes related to complex interactions between cell surfaces and the extracellular matrix. The present study was designed to localize glycoconjugates recognized by peanut agglutinin (PNA) and Maclura pomifera (MPA) lectins during mouse molar root development. Postnatal ICR mice at 10, 15, 21, 28 and 42 days were used. Lower jaws were dissected, fixed in 4% paraformaldehyde, decalcified in 5% EDTA and embedded in paraffin. Serial sections were made and stained with FITC-conjugated PNA or MPA. beta-Lactose was used as an inhibitory sugar for PNA, and alpha-D-melibiose for MPA. PNA specifically stained Hertwig's epithelial root sheath (HERS), whereas MPA stained a number of tissues. The outermost layer of root dentin, forming cellular cementum, alveolar bone and HERS showed positive reactions with MPA. Glycoconjugates localized by the lectins may be functionally related to molecules which contribute to root formation and cemento-genesis.  相似文献   

18.
Y Gaudin  H Raux  A Flamand    R W Ruigrok 《Journal of virology》1996,70(11):7371-7378
The glycoprotein (G) of rabies virus assumes at least three different conformations: the native state detected at the viral surface above pH 7, the activated state involved in the first step of the fusion process, and the fusion-inactive conformation (I). A new category of monoclonal antibodies (MAbs) which recognized specifically the I conformation at the viral surface has recently been described. These MAbs (17A4 and 29EC2) became neutralizing when the virus was preincubated at acidic pH to induce the conformational change toward the I state of G. Mutants escaping neutralization were then selected. In this study, we have investigated the fusion and the low-pH-induced fusion inactivation properties of these mutants. All of these mutants have fusion properties similar to those of the CVS parental strain, but five mutants (E282K, M44I, M44V, V392G, and M396T) were considerably slowed in their conformational change leading to the I state. These mutants allow us to define regions that control this conformational change. These results also reinforce the idea that structural transition toward the I state is irrelevant to the fusion process. Other mutations in amino acids 10, 13, and 15 are probably located in the epitopes of selecting MAbs. Furthermore, in electron microscopy, we observed a hexagonal lattice of glycoproteins at the viral surface of mutants M44I and V392G as well as strong cooperativity in the conformational change toward the I state. This finding demonstrates the existence of lateral interactions between the spikes of a rhabdovirus.  相似文献   

19.
The mitochondrial chaperone mhsp70 mediates protein transport across the inner membrane and protein folding in the matrix. These two reactions are effected by two different mhsp70 complexes. The ADP conformation of mhsp70 favors formation of a complex on the inner membrane; this 'import complex' contains mhsp70, its membrane anchor Tim44 and the nucleotide exchange factor mGrpE. The ATP conformation of mhsp70 favors formation of a complex in the matrix; this 'folding complex' contains mhsp70, the mitochondrial DnaJ homolog Mdj1 and mGrpE. A precursor protein entering the matrix interacts first with the import complex and then with the folding complex. A chaperone can thus function as part of two different complexes within the same organelle.  相似文献   

20.
Gramicidin A (gA) is a polypeptide antibiotic which forms dimeric channels specific for monovalent cations in biological membranes. It is a polymorphic molecule that adopts several different conformations, double-stranded (ds) helical dimers (pore conformation) and single-stranded beta-helical dimers (channel conformation). This study investigated the conformational adaptability of gramicidin A when incorporated into micelles as membrane-mimetic model system. Taking advantage of our reported, versatile, size-exclusion high-performance liquid chromatography (SE-HPLC) strategy that allows the separation of double-stranded dimers and monomers, we have quantitatively characterized the conformational transition undergone by the peptide in the micellar milieu. The importance of both hydrophobic/hydrophilic moieties of the amphipaths in the stabilization of concrete conformational species is demonstrated using detergents with different hydrocarbon chain length and/or polar head. SE-HPLC is a valuable, rapid, accurate technique for the structural characterization of hydrophobic autoassociating peptides that work in lipid environments such as biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号