首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of a mouse model for poliomyelitis that is transgenic for the human poliovirus receptor (hPVR) has made it much easier to investigate the efficiency of the viral dissemination process in a whole organism. These studies have given an insight into the mechanisms of blood-brain barrier permeation and neural transport. Strain-specific neurovirulence levels, however, appear to depend mainly on the replicating capacity of the virus in the central nervous system rather than the dissemination efficiency. Studies of the poliovirus-induced cytopathic effects on neural cells and specific subcellular localization of hPVR isoforms might determine a new course of investigation of poliovirus pathogenesis.  相似文献   

2.
Recent insights into stearoyl-CoA desaturase-1   总被引:7,自引:0,他引:7  
PURPOSE OF REVIEW: Stearoyl-Coenzyme A (CoA) desaturase is a central lipogenic enzyme catalyzing the synthesis of monounsaturated fatty acids - mainly oleate (C(18:1)). Oleate is the most abundant monounsaturated fatty acid in dietary fat and is therefore readily available. Why, then, is stearoyl-CoA desaturase a highly regulated enzyme? This review summarizes the recent and timely advances concerning the important role of stearoyl-CoA desaturase in metabolism. RECENT FINDINGS: Recent findings using mice that have a naturally occurring mutation in the SCD1 gene isoform as well as a mouse model with a targeted disruption of the stearoyl-CoA desaturase gene-1 (SCD1-/-) have revealed the role of de-novo synthesized oleate and thus the physiological importance of SCD1 expression. In the highlighted references, it is shown that the SCD1-/- mice have reduced body adiposity, increased insulin sensitivity, and are resistant to diet-induced obesity. The expression of several genes of lipid oxidation is upregulated, whereas lipid synthesis genes are downregulated. SCD1 was also found to be a component of the novel metabolic response to the hormone leptin. SUMMARY: SCD1, therefore, appears to be an important metabolic control point, and inhibition of its expression could be of benefit for the treatment of obesity, diabetes and other metabolic diseases.  相似文献   

3.
4.
5.
Recent insights into R gene evolution   总被引:4,自引:1,他引:3  
  相似文献   

6.
We have investigated the import pathway of the nuclear-encoded chloroplast protein ferredoxin. By using purified precursor protein and washed intact chloroplasts in a defined in vitro uptake system, we show that preferredoxin is fully import-competent by itself. In addition, we show also that the in vitro, in a wheat germ lysate, synthesized preferredoxin is not stably associated with another protein. Import is dependent only on ATP and does not require the presence of cytosolic proteins. Translocation could be largely stimulated by the thiol reducing agent dithiothreitol (DTT). To determine whether DTT acts on the precursor or on the chloroplast, we modified the 5 cysteines in the precursor by a reaction with iodoacetamide, thereby preventing the formation of disulfide bridges in the precursor. The import of this modified precursor was still stimulated by the addition of DTT, indicating that DTT had a stimulating effect on the chloroplast import machinery. In the case of the modified precursor, the import must have taken place without iron-sulfur cluster attachment in the stroma. The modified precursor could be imported with a similar efficiency as the parent precursor showing that import takes place independently from cofactor assembly.  相似文献   

7.
8.
Cardiovascular and cerebrovascular diseases, such as coronary heart disease and stroke, caused by atherosclerosis have become the “number one killer”, seriously endangering human health in developing and developed countries. Atherosclerosis mainly occurs in large and medium-sized arteries and involves intimal thickening, accumulation of foam cells, and formation of atheromatous plaques. Autophagy is a cellular catabolic process that has evolved to defend cells from the turnover of intracellular molecules. Autophagy is thought to play an important role in the development of plaques. This review focuses on studies on autophagy in cells involved in the formation of atherosclerotic plaques, such as monocytes, macrophages, endothelial cells, dendritic cells, and vascular smooth muscle cells, indicating that autophagy plays an important role in plaque development. We mainly discuss the roles of autophagy in these cells in maintaining the stability of atherosclerotic plaques, providing a reference for the next steps to unravel the mechanisms of atherogenesis.  相似文献   

9.
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

10.
Lysosomal acid lipase (LAL) is the sole enzyme known to degrade neutral lipids in the lysosome. Mutations in the LAL-encoding LIPA gene lead to rare lysosomal lipid storage disorders with complete or partial absence of LAL activity. This review discusses the consequences of defective LAL-mediated lipid hydrolysis on cellular lipid homeostasis, epidemiology, and clinical presentation. Early detection of LAL deficiency (LAL-D) is essential for disease management and survival. LAL-D must be considered in patients with dyslipidemia and elevated aminotransferase concentrations of unknown etiology. Enzyme replacement therapy, sometimes in combination with hematopoietic stem cell transplantation (HSCT), is currently the only therapy for LAL-D. New technologies based on mRNA and viral vector gene transfer are recent efforts to provide other effective therapeutic strategies.  相似文献   

11.
《Molecular cell》2022,82(20):3885-3900.e10
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
  相似文献   

12.
IGFBP-6 is an O-linked glycoprotein that preferentially binds IGF-II over IGF-I. It is a relatively selective inhibitor of IGF-II actions including proliferation, survival and differentiation of a wide range of cells. IGFBP-6 has recently been shown to have a number of IGF-independent actions, including promotion of apoptosis in some cells and inhibition of angiogenesis. IGFBP-6 also induces migration of tumour cells including rhabdomyosarcomas by an IGF-independent mechanism. This chemotactic effect is mediated by MAP kinases. IGFBP-6 binds to prohibitin-2 on the cell surface and the latter is required for IGFBP-6-induced migration by a mechanism that is independent of MAP kinases. IGFBP-6 may enter the nucleus and modulate cell survival and differentiation. IGFBP-6 expression is decreased in a number of cancer cells and it has been postulated to act as a tumour suppressor. IGFBP-6 expression is increased in a smaller number of cancers, which may reflect a compensatory mechanism to control IGF-II actions or IGF-independent actions. The relative balance of IGF-dependent and IGF-independent actions of IGFBP-6 in vivo together with the related question regarding the roles of IGFBP-6 binding to IGF and non-IGF ligands are keys to understanding the physiological role of this protein.  相似文献   

13.
Chlamydia are widespread bacteria that grow in human and animal cells. They enter their host cell, establish an intracellular environment favourable for their multiplication and finally exit the host cell. A combination of host cell factors and of bacterial proteins contribute to pathogen entry. Recent advances have shed new light on the entry mechanism, following attachment. Here we review recent data concerning endocytosis, host cell signalling, proteins secreted by the bacteria, the actin cytoskeleton in entry and the involvement of small GTPases.  相似文献   

14.
Rhynchosporium commune is the causal pathogen of scald in barley (Hordeum vulgare), a foliar disease that can reduce yield by up to 40% in susceptible cultivars. R. commune is found worldwide in all temperate growing regions and is regarded as one of the most economically important barley pathogens. It is a polycyclic pathogen with the ability to rapidly evolve new virulent strains in response to resistance genes deployed in commercial cultivars. Hence, introgression and pyramiding of different loci for resistance (qualitative or quantitative) through marker-assisted selection is an effective way to improve scald resistance in barley. This review summarizes all 148 resistance quantitative trait loci reported at the date of submission of this review and projects them onto the barley physical map, where it is clear many loci co-locate on chromosomes 3H and 7H. We have summarized the major named resistance loci and reiterated the renaming of Rrs15 (CI8288) to Rrs17. This review provides a comprehensive resource for future discovery and breeding efforts of qualitative and quantitative scald resistance loci.  相似文献   

15.
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination ‘pathway-’ in some marine bacteria and algae, a Met-methylation ‘pathway-’ in angiosperms and bacteria and a decarboxylation ‘pathway-’ in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.  相似文献   

16.
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50 years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein–protein interactions (PPI), protein–lipid interactions and the role of order–disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

17.
18.
Control or removal of undesired biofilms has frequently been found to be quite difficult. In addition to biocidal or antibiotic chemicals or materials designed to prevent biofouling, biological control agents appear to be promising. Reports of bacterial predators eradicating biofilms or eliminating pathogens motivate a more systematic screening of biofilm-eliminating bacterial predators. Unfortunately, the analysis of the eradication process is demanding. In the present study, chip-calorimetry was applied to monitor the elimination of Pseudomonas sp. biofilms by Bdellovibrio bacteriovorus. The method uses metabolic heat as a real-time parameter for biofilm activity. The method is non-invasive, fast and convenient due to real-time data acquisition. In addition, heat-production data can reveal information about the energetics of the predator-prey interaction. The calorimetric results were validated by confocal laser scanning microscopy. The approach described may be useful for the screening of biofilm susceptibility to different predators.  相似文献   

19.
Control or removal of undesired biofilms has frequently been found to be quite difficult. In addition to biocidal or antibiotic chemicals or materials designed to prevent biofouling, biological control agents appear to be promising. Reports of bacterial predators eradicating biofilms or eliminating pathogens motivate a more systematic screening of biofilm-eliminating bacterial predators. Unfortunately, the analysis of the eradication process is demanding. In the present study, chip-calorimetry was applied to monitor the elimination of Pseudomonas sp. biofilms by Bdellovibrio bacteriovorus. The method uses metabolic heat as a real-time parameter for biofilm activity. The method is non-invasive, fast and convenient due to real-time data acquisition. In addition, heat-production data can reveal information about the energetics of the predator–prey interaction. The calorimetric results were validated by confocal laser scanning microscopy. The approach described may be useful for the screening of biofilm susceptibility to different predators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号