首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

2.
The potential of four essential cations (K+, Ca2+, Mg2+ and Fe2+) to alleviate salt toxicity was studied in sage (Salvia officinalis L.) plants grown in pots. Two concentrations of the following chloride salts: KCl, CaCl2, MgCl2 and FeCl3, were used together with 100 mM NaCl to study the effects of these nutrients on plant growth, leaf essential oils (EOs) and phenolic diterpenes composition. The sage plants accumulated Na+ in their leaves (includers); this has affected secondary metabolites’ biosynthesis. Treatment with 100 mM NaCl slightly decreased borneol and viridiflorol, while increased manool concentrations. Addition of KCl, CaCl2 and MgCl2 increased considerably in a dose-dependent manner the oxygen-containing monoterpenes (1.8-cineole, camphor, β-thujone and borneol) in 100 mM NaCl-treated sage. Whereas, the contents of viridiflorol decreased further with the addition of KCl in 100 mM NaCl-treated sage. Our results suggest that the changes in EOs composition were more related to K+ and Ca2+ availability than to Na+ toxicity. Furthermore, treatment with NaCl decreased by 50% carnosic acid (CA), a potent antioxidant, content in the leaves. K+ and Ca2+ promoted the accumulation of CA and its methoxylated form (MCA) in the leaves. The concentration of CA was positively correlated with leaf K+ (r = 0.56, P = 0.01) and Ca2+ (r = 0.44, P = 0.05) contents. It appears that different salt applications in combination with NaCl treatments had a profound effect on EOs and phenolic diterpene composition in sage. Therefore, ionic interactions may be carefully considered in the cultivation of this species to get the desired concentrations of these secondary metabolites in leaf extracts.  相似文献   

3.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

4.
Salinity remarkably inhibits NO3 - uptake but the mechanisms are not well understood. This study was addressed to elucidate the role of ionic and osmotic components of salinity on NO3 - influx and efflux employing classic kinetics involving a low affinity transport system (LATS) and a high affinity transport system (HATS). In the presence of KCl, NaCl, and Na2SO4 at 100 mM concentrations, in both LATS and HATS, Michaelis constant (Km) was similar for the three salts and maximum rate (Vmax) decreased as follows: KCl > NaCl > Na2SO4, compared to control indicating a non-competitive interaction with NO3 -. Unexpectedly, iso-osmotic solutions (osmotic potential Ψπ = -0.450) of polyethylene glycol (PEG, 17.84 %, v/v) and mannitol (100 mM) remarkably increased Km in both the LATS and the HATS, but Vmax did not change indicating a competitive inhibition. Under the PEG and mannitol treatments, Km and Vmax were higher than under the salt treatments. The salts increased slightly NO3 - efflux in the following order KCl > NaCl > Na2SO4. In contrast, mannitol strongly stimulated and the PEG inhibited NO3 - efflux. The obtained data reveal that salinity effects were not dependent on the anion type (Cl- versus SO4 2-) indicating a non-competitive inhibition mechanism between Cl- and NO3 -. In contrast, the cation types (K+ versus Na+) had a pronounced effect. The osmotic component is important to net NO3 - uptake affecting remarkably the influx in both LATS and HATS components of cowpea roots.  相似文献   

5.
Effects of external ionic conditions ofD. discoideum cells were examined in relation to intracellular ionic concentrations, the activity of pyruvate kinase and the amount of ATP. Main components of metal cations in heat extracts of vegetative cells were K+, Na+, Mg2+ and Ca2+ whose concentrations in a cell were about 35.0, 3.6, 10.6 and 2.3 mM, respectively. External Na+ at the concentration more than 50 mM inhibited the formation of cell aggregates in the presence of 10?4M Ca2+. Such an inhibitory effect of Na+ was completely nullified by the addition of more than 10 mM K+. External Na+ caused a rapid decrease in intracellular K+, but an increase in intracellular Na+. Furthermore, it was found that the cells containing a high concentration of Na+ can develop normally in the presence of exogenous 10 mM K+, where intracellular K+ was maintaned at about 30 mM, irrespective of a high concentration of intracellular Na+ (about 30 mM). These suggest that the Na+-inhibition of the development is caused by a decrease in intracellular K+, but not by an increase in intracellular Na+. Pyruvate kinase extracted from the organism required K+ for its activation. The vegetative cells incubated in 50 mM Na+ contained only about 10 mM K+ which is insufficient for the enzyme activation. However, the amount of ATP in the cells containing less K+ was similar to that in those with much K+. These results are discussed in relation to the activity of glycolysis.  相似文献   

6.
Four selected NaCl-tolerant cell lines of Sour orange (Citrus aurantium) were compared with the nonselected cell line in their growth and internal ion content of Na+, K+, and Cl when exposed to increasing NaCl concentrations. No difference was found among the various NaCl-tolerant cell lines in Na+ and Cl uptake, and all these cell lines took up similar or even larger amounts of Na+ and Cl than the NaCl-sensitive cell line. Exposure of cells of NaCl-sensitive and NaCl-tolerant lines to equal external concentrations of NaCl, resulted in a greater loss of K+ from the NaCl-sensitive cell line. This observation leads to the conclusion that growth and ability to retain high levels of internal K+ are correlated. Exposure of the NaCl-tolerant cell lines to salts other than NaCl resulted in even greater tolerance to Na2SO4, but rather poor tolerance to K+ introduced as either K2SO4 or KCl; the latter has a stronger inhibitory effect. The NaCl-sensitive cell line proved to be more sensitive to replacement of Na+ by K+. Analyses of internal Na+, K+, and Cl concentrations failed to identify any particular internal ion concentration which could serve as a reliable marker for salt tolerance.  相似文献   

7.
Based upon analyses of the composition of electric eel blood serum we suggest a new physiological saline solution as follows: 188 mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 0.15 mM NaH2PO4, 1.45 mM Na2HPO4 and 5 mM glucose; pH 7.4. The major difference between this saline and that used in most of the previous investigations using eel electroplaques is that the total Na+ concentration is increased from between 162.7 and 171.7 mequiv/l to 191 mequiv./l. This increase does not appear to affect the electrophysiological properties of the electroplaque.  相似文献   

8.
Osmotic adjustment of cultured tobacco (Nicotiana tabacum L. var Wisconsin 38) cells was stimulated by 10 micromolar (±) abscisic acid (ABA) during adaptation to water deficit imposed by various solutes including NaCl, KCl, K2SO4, Na2SO4, sucrose, mannitol, or glucose. The maximum difference in cell osmotic potential (Ψπ) caused by ABA treatment during adaptation to 171 millimolar NaCl was about 6 to 7 bar. The cell Ψπ differences elicited by ABA were not due to growth inhibition since ABA stimulated growth of cells in the presence of 171 millimolar NaCl. ABA caused a cell Ψπ difference of about 1 to 2 bar in medium without added NaCl. Intracellular concentrations of Na+, K+, Cl, free amino acids, or organic acids could not account for the Ψπ differences induced by ABA in NaCl treated cells. However, since growth of NaCl treated cells is more rapid in the presence of ABA than in its absence, greater accumulation of Na+, K+, and Cl was necessary for ion pool maintenance. Higher intracellular sucrose and reducing sugar concentrations could account for the majority of the greater osmotic adjustment of ABA treated cells. More rapid accumulation of proline associated with ABA treatment was highly correlated with the effects of ABA on cell Ψπ. These and other data indicate that the role of ABA in accelerating salt adaptation is not mediated by simply stimulating osmotic adjustment.  相似文献   

9.
1. The question of the critical pore diameter for streaming potential is discussed. 2. The surface charge is calculated for cellulose in contact with solutions of K3PO4, K2CO3, K2SO4, KCl, and ThCl4. 3. The surface charge of cellulose in contact with a solution of 2 x 10–4 N NaCl is calculated as a function of temperature and is found to show a sharp break at 39°. This is interpreted in terms of the change of the specific heat of water. 4. A marked ion antagonism is found in NaCl:KCl, KCl:MgCl2, NaCl:MgCl2, NaCl:CaCl2, KCl:CaCl2, CaCl2:MgCl2 mixtures when the surface charge is calculated as a function of concentration.  相似文献   

10.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

11.
Osmotic and ionic regulation in Nitella   总被引:2,自引:0,他引:2  
When the osmotic value of an internodal cell of Nitella flexiliswas modified by the method of transcellular osmosis, the normalosmotic value was chiefly restored by the release or absorptionof K+. The release or uptake of Na+ was observed only when themodification of osmotic value was significant. Both the uptakeand release of K+ were linearly dependent on the degree of modificationof the osmotic value. The effectiveness of alkali metal cationsin restoring the osmotic value in cells of lower osmotic valueswas in the order K+>Rb+>Na+, Cs+>Li+. The absorptionof K+ by cells of lower osmotic values depended strongly ontemperature, while the release of K+ from cells of higher osmoticvalues did not. To clarify whether the Nitella cell regulates the osmotic valueor regulates the concentration of K+ in the vacuole, the cellsap was exchanged for artificial cell saps whose osmotic valuesand ionic concentrations were varied independent of each other.It was shown that in Nitella two regulating mechanisms are operating,one which regulates the osmotic value of the cell sap irrespectiveof the level of vacuolar K+ (0.1–140 mM) and another whichregulates the vacuolar K+-level when it is abnormaly high (>160mM). Both mechanisms are assumed to operate in order to keepthe concentration of K+ in the cytoplasm at a constant level.The presence of Na+ (0–100 mM) and Ca2+ (5–40 mM)did not affect the movement of K+ during osmoregulation. 1Present address: Sanki Engineering Limited, Nagaokakyo, Kyoto,Japan. (Received December 19, 1973; )  相似文献   

12.
Mitsuya S  Taniguchi M  Miyake H  Takabe T 《Planta》2005,222(6):1001-1009
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.  相似文献   

13.
Growth, osmotic adjustment, antioxidant enzyme defense and principle medicinal component bacoside A was studied in in vitro raised shoots of Bacopa monnieri under different concentrations of KCl and CaCl2 (0, 50, 100, 150 or 200 mM). Significant reduction was observed in shoot number per culture; shoot length, fresh weight, dry weight and tissue water content (TWC) when shoots were exposed to increasing KCl and CaCl2 concentrations (50–200 mM) as compared to control. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in control in contrast to sharp increase in KCl and CaCl2 stressed shoots. Higher amounts of free proline, glycine betaine and total soluble sugars (TSS) accumulated in KCl and CaCl2 exposed shoots compared to the controls. Among different concentrations of KCl and CaCl2, increasing concentration of CaCl2 showed more increase in osmolyte accumulation. Na+ content decreased with increasing concentrations of KCl and CaCl2. Accumulation of K+ increased significantly in KCl (50–100 mM) stressed shoots as compared to control, while it decreased in CaCl2 treated shoots indicating that it prevents the uptake of K+ ions. Ca2+ accumulation significantly increased with increasing concentrations of CaCl2 up to 150 mM but decreased at higher concentrations. Shoots treated with KCl and CaCl2 (0–100 mM) showed higher antioxidant enzyme (SOD, CAT, APX and GPX) activities but KCl suppressed the activities at higher concentrations. Accumulation of bacoside A was enhanced with an increase in KCl and CaCl2 concentration up to 100 mM. It appears from the data that accumulation of osmolytes, and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa and the two salts tested have a positive effect on bacoside accumulation.  相似文献   

14.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

15.
Previous studies indicate that the roots of nonhalophytes showed negative halotropism to salt stress to avoid salt damage. However, halotropism of euhalophytes and their possible reasons are little known. Limonium bicolor, a typical recretohalophyte with multicellular salt glands, was used to study halotropism compared with Arabidopsis thaliana under NaCl, KCl and Na2SO4 stress. The elongation of the roots in L. bicolor was significantly promoted by the appropriate concentrations of NaCl, KCl and Na2SO4, but those of A. thaliana was markedly inhibited. However, isosmotic mannitol with 200?mM NaCl did not affect the root growth of both L. bicolor and A. thaliana. The root activity of both L. bicolor and A. thaliana was enhanced by salts. Compared with K+, Cl, and SO42?, Na+ played a critical role in halotropism of L. bicolor. Furthermore, the gravitropic setpoint angle of L. bicolor increased under NaCl, KCl and Na2SO4 treatments compared with controls, and the phenomenon was most apparent under NaCl treatments. The endogenous IAA content of the NaCl-treated L. bicolor seedlings was significantly higher than that of the controls. These results suggest that the recretohalophyte L. bicolor has positive halotropism and Na+ plays a pivotal role in L. bicolor’s positive root halotropism by regulating IAA.  相似文献   

16.
The efflux of K+ and Na+ from sea urchin eggs during Ca2+ ionophore A23187-induced parthenogenesis was studied in a K+ and Na+-free artificial seawater using extracellular ion-specific electrodes. We have probed this model system with monovalent cation-specific ionophores to determine if they affect K+ efflux in the unfertilized egg and whether any changes in ionophore sensitivity are observed during egg activation. In 500 mM choline chloride, 10 mM CaCl2, 50 mM MgCl2, 10 mM Tris-Cl pH 8.0, A23187 induced a rapid efflux of K+ and Na+ from the eggs after a short lag time (10–15 seconds). After the burst, the rate of K+ efflux remained higher than the pre-activation rate, but was lower than during the burst phase, while the rate of Na+ efflux became nearly zero. Monovalent cation-specific ionophores (valinomycin, gramicidin and nigericin) had no effect on K+ efflux from the unfertilized eggs in our model system. However, once the egg was activated by A23187, each of the above ionophores caused a prolongation of the burst phase for many minutes. These results show that the unfertilized egg plasma membrane (using our artificial conditions) is not susceptible to the monovalent cation-specific antibiotics and suggest that either the inserted cortical granule membrane or the developing fertilization envelope interacts with these ionophores to cause the change in rate-limiting step for K+ efflux observed egg activation.  相似文献   

17.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+-dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187–3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabaininhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V]-vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution.  相似文献   

18.
We have investigated the suitability of 5′-p-fluorosulfonylbenzoyladenosine (FSBA) as an ATP site affinity probe for the canine kidney Na+,K+-ATPase. The purified enzyme is slowly inactivated by this compound in suitable buffers, losing about half of its activity over a two-hour period. The rate of inactivation is more rapid in 0.1 M KCl than in 0.1 M NaCl. Low concentrations of ATP protect the enzyme against inactivation, with half-maximal effects at 4 μM ATP in 0.1 M NaCl and 350 μM ATP in 0.1 M KCl. ADP also protects against FSBA inhibition, but AMP is ineffective when present at 100 μM levels. This pattern is consistent with the previously described nucleotide specificity of the Na+,K+-ATPase. Addition of protective amounts of ATP after inactivation has occurred does not restore enzyme activity, indicating that inhibition is irreversible. Measurement of the concentration-dependence of FSBA inactivation suggests an apparent Kd for binding of this compound well above 1 mM, the solubility limit of the analog. This finding is reinforced by the failure of 1 mM FSBA to compete effectively with ATP for the high-affinity ATP site of the enzyme. Nevertheless, attachment of the analog to this site is indicated by its ability to prevent [3H]-ADP binding in proportion to the number of sites it has inactivated. Studies with [3H]-FSBA show that about 1 mole of the analog attaches specifically to the α subunit per mole of enzyme inactivated. A similar amount of nonspecific labeling also occurs with negligible effect on enzyme activity. These findings suggest that FSBA may be useful in probing the topography of the high-affinity ATP binding site of the Na+,K+-ATPase and related enzymes.  相似文献   

19.
B. Demmig  K. Winter 《Planta》1986,168(3):421-426
Concentrations of four major solutes (Na+, K+, Cl-, proline) were determined in isolated, intact chloroplasts from the halophyte Mesembryanthemum crystallinum L. following long-term exposure of plants to three levels of NaCl salinity in the rooting medium. Chloroplasts were obtained by gentle rupture of leaf protoplasts. There was either no or only small leakage of inorganic ions from the chloroplasts to the medium during three rapidly performed washing steps involving precipitation and re-suspension of chloroplast pellets. Increasing NaCl salinity of the rooting medium resulted in a rise of Na+ und Cl- in the total leaf sap, up to approximately 500 and 400 mM, respectively, for plants grown at 400 mM NaCl. However, chloroplast levels of Na+ und Cl- did not exceed 160–230 and 40–60 mM, respectively, based upon a chloroplast osmotic volume of 20–30 l per mg chlorophyll. At 20 mM NaCl in the rooting medium, the Na+/K+ ratio of the chloroplasts was about 1; at 400 mM NaCl the ratio was about 5. Growth at 400 mM NaCl led to markedly increased concentrations of proline in the leaf sap (8 mM) compared with the leaf sap of plants grown in culture solution without added NaCl (proline 0.25 mM). Although proline was fivefold more concentrated in the chloroplasts than in the total leaf sap of plants treated with 400 mM NaCl, the overall contribution of proline to the osmotic adjustment of chloroplasts was small. The capacity to limit chloroplast Cl- concentrations under conditions of high external salinity was in contrast to an apparent affinity of chloroplasts for Cl- under conditions of low Cl- availability.Abbreviation Chl chlorophyll  相似文献   

20.
Y. Tominaga  M. Tazawa 《Protoplasma》1981,109(1-2):113-125
Summary The effect of osmolarity of the vacuolar sap ofChara australis on cytoplasmic streaming was analyzed using the vacuolar perfusion technique. The osmolarity was varied between 0.3 M, which is normal and 1.2 M. The streaming rate decreased markedly with an increase in sap osmolarity, while the motive force increased significantly. This may be explained in terms of an increase in the sliding resistance at the sol-gel interface where active shearing occurs. Increase in the resistance is assumed to be caused by osmotic dehydration of the cytoplasm. This assumption was verified by the fact that in tonoplast-free cells, no significant inhibition of the streaming was observed by heightening the osmolarity of the cytoplasm with sorbitol. Heightening it with K+ salts inhibited the streaming to a greater extent than with sorbitol. The inhibition differed according to the anion species. Potassium methanesulfonate at 0.3 M and KCl at 0.6 M stopped the streaming almost completely, while 0.59 M K2SO4 was less inhibitory. Actin filaments were observed even in the presence of 0.6 M KCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号