首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Usual concentrations of antimycin A, rotenone and EDTA, individally or in combination, reduced aerobic growth rate and cell yield of Candida albicans to about half its normal level and to about the levels of previously-described acetate-negative, cytochrome-complete and aa3-deficient variants which were little affected by the inhibitors. Anaerobic conditions (not affected by antimycin A) reduced growth rate and cell yield of all cultures-including that of a nonrespiring aa3, b-deficient mutant-to low, equal levels. Antimycin A but not rotenone prevented growth of the normal strain on ethanol medium. Cyanide and antimycin A blocked most of the respiration of the normal strain and cytochrome-complete variant, but did not affect that of the cytochrome aa3-deficient mutant. Rotenone and EDTA did not affect respiration of any of the cultures. SHAM blocked cyanide- and antimycin A-insensitive respiration and prolonged the lag phases of the three respiring cultures, especially in the presence of antimycin A, but alone increased oxygen-uptake rate of the cytochromecomplete cultures while curtailing that of the cytochrome aa3-deficient mutant. Resting cells, especially wild-type, grown in medium containing antimycin A exhibited lowered oxygen-uptake rate, which was increased upon the addition of cyanide or antimycin A. Antimycin A stimulated, but cyanide inhibited, respiration of cytochrome-complete cultures grown in the presence of rotenone but did not affect that of the cytochrome aa3-deficient mutant. SHAM inhibited respiration of all antimycin A- or rotenone-grown cultures. The high rate of respiration of C. albicans in the presence of inhibitors for three sites of electron transport in the conventional oxidative pathway, the inhibition of this respiration by SHAM and its loss by the absence of cytochrome b, indicate an alternate oxidative pathway in this organism which crosses the conventional one at cytochrome b.This work was supported by Public Health Service Graduate Dental Training Grant DE 00144 and the Graduate School and the Department of Microbiology, Southern Illinois University.  相似文献   

2.
Transposon Tn5 was used to mutate Bradyrhizobium japonicum USDA 61N. From over 5000 clones containing Tn5, 12 were selected and purified using a chemical reaction to identify oxidase-deficient clones. Four classes of mutants were identified based on the alterations in cytochromes. Most of the mutants had alterations in more than one cytochrome. Southern hybridization analysis of restricted genomic DNA of a representative strain of each class demonstrated that each mutant had a single Tn5 insert. Thus a single Tn5 insert produced pleiotropic effects on cytochromes. One class, which was totally deficient in cytochromes aa3 and c, produced ineffective nodules on soybeans. Most of the strains representing the other classes produced effective nodules but exceptions were observed in each class. Bacteroids of the wild-type strain contained cytochrome aa3. Bacteroids from one class of mutants were totally devoid of cytochrome aa3. Several of these strains produced effective symbioses indicating that cytochrome aa3 is not required for an effective symbiosis in this DNA homology group II strain which normally has this terminal oxidase in bacteroids.  相似文献   

3.
Summary Three nuclear mutants of Neurospora crassa, temperature-sensitive for the synthesis of cytochrome aa 3 have been isolated. When grown at 41°C the mutants have large amounts of KCN-insensitive respiration, reduced amounts of cytochrome aa 3 and cytochrome c oxidase activity, and grow more slowly than wild-type cultures grown at the same temperature. When the mutants are grown at 23°C, they are virtually indistinguishable from wild-type strains.The mutants were selected on the basis of their slow growth at 41°C in medium containing salicylhydroxamic acid, and by their inability to reduce 2,3,5-triphenyltetrazolium chloride at 41°C. The selection technique was designed to eliminate mutants that did not carry thermolabile electron transport chain components. However, studies on the thermolability of the cytochrome oxidase activity in isolated mitochondria indicate that the enzyme of the mutants is no more susceptible to heat denaturation than is the enzyme in wild-type mitochondria. This suggests that the synthesis or assembly of cytochrome aa 3 may be altered in the mutants at the restrictive temperature.Supported by National Research Council of Canada Grant Number A-6351Recipient of a National Research Council of Canada Postgraduate Scholarship  相似文献   

4.
《Experimental mycology》1993,17(2):142-154
Salcedo-Hernandez, R. and Ruiz-Herrera, J. 1993. Isolation and characterization of a mycelial cytochrome aa3-deficient mutant and the role of mitochondria in dimorphism of Mucor rouxii. Experimental Mycology 17, 142-154. We isolated several mutants of Mucor rouxii unable to utilize triphenyltetrazolium hydrochloride as a final electron acceptor. These mutants did not grow in nonfermentable substrates, and their growth rate was severely reduced in aerobiosis compared to growth of wild type; anaerobic growth was unaffected. Mutation of one selected strain was traced to a decreased level and alteration in the properties of cytochromes aa3. The fact that the mutant displayed normal mycelial morphology suggests that there is no direct relationship between dimorphism and the operation of the cytochrome respiratory chain. This conclusion was strengthened by the observation that different inhibitors of the latter did not induce yeast-like development. A unitary hypothesis is proposed suggesting that dimorphic Mucorales possess a morphogenetic switch linked to a metabolic O2 or redox sensor, distinct from the late segments of the respiratory chain. In some species such as Mucor rouxii, the function of the sensor to turn off polarized growth would require a further block brought about by CO2 or catabolic repression.  相似文献   

5.
1. Purified mitochondria have been prepared from wild type Paramecium tetraurelia and from the mutant Cl1 which lacks cytochrome aa3. Both mitochondrial preparations are characterized by cyanide insensitivity. Their spectral properties and their redox potentials have been studied.2. Difference spectra (dithionite reduced minus oxidized) of mitochondria from wild type P. tetraurelia at 77 K revealed the α peaks of b-type cytochrome(s) at 553 and 557 nm, of c-type cytochrome at 549 nm and a-type cytochrome at 608 nm. Two α peaks at 549 and 545 nm could be distinguished in the isolated cytochrome c at 77 K. After cytochrome c extraction from wild type mitochondria, a new peak at 551 nm was unmasked, probably belonging to cytochrome c1. The a-type cytochrome was characterized by a split Soret band with maxima at 441 and 450 nm. The mitochondria of the mutant Cl1 in exponential phase of growth differed from the wild type mitochondria in that cytochrome aa3 was absent while twice the quantity of cytochrome b was present. In stationary phase, mitochondria of the mutant were characterized by a new absorption peak at 590 nm.3. Cytochrome aa3 was present at a concentration of 0.3 nmol/mg protein in wild type mitochondria and ubiquinone at a concentration of 8 nmol/mg protein both in mitochondria of the wild type and the mutant Cl1. Cytochrome aa3 was more susceptible to heat than cytochromes b and c,c1.4. CO difference spectra at 77 K revealed two different Co-cytochrome complexes. The first, found only in wild type mitochondria, was a typical CO-cytochrome a3 complex characterized by peaks at 596 and 435 nm and troughs at 613 and 450 nm. The second, found both in mitochondria of the wild type and the mutant, was a CO-cytochrome b complex with peaks at 567, 539 and 420 nm and a trough at 558-549 nm. Both complexes are photo-dissociable.5. Spectral evidence was obtained for interaction of cyanide with the a-type cytochrome (shift of the α peak at 77 K from 608 to 605 nm), but not with the b-type cytochrome.6. The mid-point potentials of the different cytochromes at neutral pH are as follows: cytochrome aa3 235 and 395 mV, cytochrome c,c1 233 mV, cytochromes b 120 mV.  相似文献   

6.
Summary The mitochondria of the cyt-2-1, cya-3-16, cya-4-23 and 299-1 nuclear mutants and the [mi-3] and [exn-5] cytoplasmic mutants of Neurospora crassa are deficient in cytochrome aa 3, while the cyb-1-1 and cyb-2-1 mutants have mitochondrial b-cytochrome dificiencies. However, the mitochondria from cyb-1-1 cyt-2-1, cyb-1-1 [mi-3] and cyb-2-1 [mi-3] double mutants contain 30% to 50% of the amount of cytochrome aa 3 that is present in mitochondria from wild-type; i.e. cyb-1-1 and cyb-2-2 act as suppressors of the cytochrome aa 3 deficiency phenotypes that are associated with the cyt-2-1 and [mi-3] mutations.The production of cytochrome aa 3 can be induced in cyt-2-1 and [mi-3] by growing cells in medium containing antimycin A, an inhibitor of electron transport in the cytochrome bc 1 segment of the mitochondrial electrontransport chain. Moreover, the growth of the [mi-3] mutant is strongly stimulated by low concentrations of antimycin A. The induction of cytochrome aa 3 by antimycin treatments does not occur in [exn-5], cya-4-23 and 299-1 cells, but does take place in cya-3-16 cells.Although some of the seven constituent polypeptides of cytochrome aa 3 are present the mitochondria of [mi-3], the holoenzyme complex is not formed in the mutant. In contrast, the mitochondria of cyb-1-1 [mi-3] and cyb-2-2 [mi-3] double mutants contain a fully assembled cytochrome oxidase complex as well as some unassembled subunit polypeptides.The observations are indicative of the existence of at least two regulatory systems controlling the production of cytochrome aa 3. One of the circuits appears to control the basal or constitutive production of cytochrome oxidase, the other seems to coordinate the level of cytochrome aa 3 with some function of the mitochondrial cytochrome bc 1 complex, possibly electron transport.  相似文献   

7.
1. Mitochondria from three non-allelic mutants of Saccharomyces cerevisiae, each lacking cytochrome aa3 as a consequence of single nuclear gene mutation, exhibited oxidative phosphorylation with ferricyanide as electron acceptor with the same efficiency as wild-type yeast mitochondria.  相似文献   

8.
Summary The genetic and physiological properties of two nuclear mutants of Parameccium tetraurelia affecting mitochondrial properties, and first screened as resistant to tetrazolium (TTC) are described. The mutant TTC 64-1 R is strongly deficient in cytochrome c and the mutant TTC 66p R is partially deficient in cytochrome aa3; both mutants display cyanide insensitive respiration in exponential growth phase. In the double mutant TTC 64-1 R -TTC 66p R /TTC 64-1 R -TTC 66p R the deficiency in cytochrome aa3 due to the TTC 64-1 R mutation is suppressed. The mutation TTC 64-1 R does not suppress cytochrome aa3 deficiencies due to mitochondrial mutations, but does interact with another nuclear mutation, cl 1, (compatible only with mitochondria deficient in cytochrome oxidase) in such a way that the double mutant TTC 64-1 R -cl 1/TTC 64-1 R -cl 1 displays a normal amount of cytochrome aa3. The possible mechanisms and physiological significance of these suppressive effects are discussed.Abbreviations TTCR/TTCS resistant/sensitive to tetrazolium - KCNR/KCNS cyanide insensitive/sensitive respiration - aa 3 - /aa 3 + deficient/normal amount of cytochrome aa3 - c-/c+ deficient/normal amount of cytochrome c  相似文献   

9.
Summary We have isolated twenty-six nuclear, singlegene cytochrome-deficient mutants of Neurospora crassa as an initial step toward the study of the structural components and regulatory mechanisms involved in the biogenesis of the mitochondrial cytochrome system. These mutants, together with two previously described mutants, cyt-1 and cyt-2, have been classified into six distinct groups on the basis of cytochrome phenotype: a) cytochrome aa 3 deficiency (due to mutations affecting loci designated cya); b) cytochrome b deficiency (cyb-1 locus); c) cytochrome b deficiency with a partial deficiency of cytochrome aa 3 (cyb-2 locus); d) deficiency of both cytochromes aa 3 and b (cyt loci); e) deficiency of both cytochromes aa 3 and c (cyt-2 locus); and f) partial deficiency of cytochromes aa 3 and c (cyt-12 locus).Four of seven mutations affecting cya loci have been mapped and are located on linkage groups I, II, V, and VI. It is not yet known whether these genes code for structural components of cytochrome oxidase or have a regulatory function that affects synthesis or assembly of the enzyme. The cyb-1 and cyb-2 genes are located on linkage groups V and VI, respectively, and appear to code for regulatory elements that control the biogenesis of cytochromes b and aa 3 . The positions of the cyt mutations that cause a simultaneous deficiency of cytochromes aa 3 and b are dispersed throughout the genome, except for two gene clusters on the left arm of linkage group I. Some of these mutants may be deficient in mitochondrial protein synthesis. Two mutations, cyt-2 and cyt-12, are located on linkage groups VI and II, respectively, and appear to affect genes that code for components of a regulatory system that controls the biogenesis of cytochromes aa 3 and c.  相似文献   

10.
When the effect of catabolite repression is eliminated Saccharomyces cerevisiae prefers an aerobic metabolism. The potential for completely aerobic catabolism exists even in circumstances where its action is limited by the oxygen available. When the oxygen absorption in the medium is adequate, yeast uses a solely oxidative metabolism for energy-yielding reactions. The changes observed in the activity of malate dehydrogenase can be described as a function of two isoenzymes, both of which are affected by oxygen; the isoenzyme participating in the glyoxylate cycle shows variations in activity similar to that observed in isocitrate lyase. NAD-linked glutamate dehydrogenase activity roughly follows that of malate dehydrogenase and isocitrate lyase; in cultivations with the same growth rate the NADP-linked dehydrogenase is insensitive to the oxygen level. The cytochromes aa3, b, and c have a clear maximum at low oxygen tension, the most sensitive being cytochrome aa3. The imbalance between cytochrome c:oxygen oxidoreductase activity and the amount of cytochrome aa3, and the correlation observed between respiration rate and the activities of cytochrome c oxidase and NADH2:cytochroine c oxidoreductase are discussed. Methods used for estimation of cytochromes are compared.  相似文献   

11.
K.S. Cheah 《BBA》1975,387(1):107-114
1. The cytochrome system in Ascaris muscle mitochondria was further characterized using purer preparations.2. Difference spectra (at 22 °C and ?196 °C) of the mitochondrial preparations using succinate and ascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine show that Ascaris muscle mitochondria contain cytochromes c1, c and aa3, and also at least three b-type cytochromes. The b-type cytochrome is the predominant component.3. Cytochrome c and Ascaris cytochrome b-560 can be extracted from the mitochondrial preparations with 150 mM KCl, leaving the membrane-bound cytochromes c1, b and aa3 in the KCl residue.  相似文献   

12.
The rate of incorporation of [14C]aminolevulinic acid (ALA) into cytochrome hemes was used to measure mitochondrial cytochrome synthesis in the fat body of adult male Blaberus discoidalis cockroaches. The hemes of cytochromes aa3+b and c+c1, were chemically separated to observe differential rates in their synthesis and regulation. [14C]ALA was linearly incorporated into cytochrome hemes for at least 8 h. No significant pool of endogenous ALA was detected relative to the amount of administered [14C]ALA. Peak cytochrome synthesis occurred 4 to 6 days after adult emergence. Endocrine disruption by corpora cardiaca-corpora allata extirpation or cervical ligation eliminated the 4-day developmentally related increase in the rate of cytochrome aa3+b synthesis but had no effect on the production of cytochromes c+c1. Injections of corpora cardiaca extracts into cervically ligated animals stimulated the rate of production of cytochromes aa3+b by 2.5 times but did not affect cytochromes c+c1. By comparison, juvenile hormone injections did not affect the rate of synthesis of either cytochrome fraction. These findings indicate that a neurohormone regulates the rate of synthesis of cytochromes a+b in insect fat body mitochondria.  相似文献   

13.
A Rhizobium phaseoli cytochrome mutant, unable to oxidize N,N,N′,N′ -tetramethyl-p-phenylend(amine (TMPD), was isolated after Mu-dl (Kan lac) mutagenesis of the wild-type strain CE-3. Mutant strain CFN4202 had sixfold less haem-c but similar levels of b type, o and aa3 cytochromes than the wild-type strain. CFN402 strain also showed reduced NADH- and TMPD-oxidase activity than the wild-type strain. Succinate-oxidase activities were very similar. Western blot experiments, using antiserum against bovine c1 and c cytochromes, revealed that both proteins were present in CFN4202 membranes, suggesting a defect of haem binding to cytochrome c. Nodules formed by this strain in Phaseolus vulgaris did not contain bacteroids. These data suggest that the cytochrome c-aa3 chain or some other respiratory chain, containing c-type cytochromes in R. phaseoli, is essential for bacterial division during the early steps of the symbiotic interaction with the legume-host.  相似文献   

14.
We report here the discovery of a novel bacterial gene (cycH) whose product is involved in the biogenesis of most of the cellular cytochromes c. The cycH gene was detected in the course of characterizing a cytochrome oxidase-deficient Bradyrhizobium japonicum Tn5 mutant (strain CO×3) in which the transposon insertion disrupted cycH. Ali of the c-type cytochromes detectable in aerobically grown B. Japonicum wild-type cells were absent in the C0X3 mutant, with the exception of cytochrome c1. A secondary phenotypic effect was the spectroscopic absence of the aa3-type cytochrome c oxidase. The nucleotide sequence of the cloned wild-type cycH gene predicted a membrane-bound 369-amino-acid protein with an Mr of 39727. Results from studies on its membrane topology suggested that approximately 110 N-terminal amino acids are involved in anchoring the protein in the membrane, whereas the remaining two-thirds of the protein are exposed to the periplasm. We postulate that the CycH protein plays an essential role in an as yet unidentified periplasmic step in the biogenesis of holocytochromes c, except that of cytochrome c1.  相似文献   

15.
Rice seeds were germinated for up to 5 days under water (submerged)and some for another day in air (air-adapted). Control seedswere germinated for 6 days throughout in air. Low-temperaturedifference spectra of shoot mitochondria were compared amongthese three types of seedlings. All cytochromes found in theaerobic seedlings were present in the submerged seedlings. However,there were some differences in the cytochromes b553 and c ofthese two types of seedlings. The cytochrome aa3 peak heightand cytochrome oxidase activity per mitochondrial protein increased1.6- and 2.8-fold, respectively, during air adaptation. Slightlyhigher concentrations of the b-type cytochromes than found inair-adapted mitochondria were already present in submerged mitochondria.The computed difference between the dithionite-reduced differencespectra of mitochondria from submerged seedlings before andafter air adaptation, showed that cytochromes aa3 and c hadincreased more than cytochrome b557 during air adaptation. (Received November 16, 1987; Accepted March 16, 1988)  相似文献   

16.
The electron transport systems of Fasciola hepatica mitochondria were investigated spectrophotometrically at room temperature and at −196°. The mitochondria were found to contain substrate reducible a-, b- and c-type cytochromes. All of the cytochrome components of the classical mammalian type of respiratory chain were present, although the concentration of cytochromes aa3 was low. In addition to the mammalian type of respiratory chain, the Fasciola mitochondria contained a substrate reducible b-type cytochrome component (557 nm) which included a CO reactive o-type cytochrome. The results suggest that F. hepatica mitochondria contain a branched electron transport system including a mammalian type of chain and involving two terminal oxidases and at least two b-type cytochromes.  相似文献   

17.
In a spontaneous mutant (PYM1) of Bacillus cereus impaired in the synthesis of haem A, no haem-A-containing cytochromes were detected spectroscopically. The haem A deficiency was compensated by high levels of haem O and a CO-reactive cytochrome o in membranes; no other oxidases were detected. In contrast, the wild-type strain had considerable amounts of haem A and negligible levels of haem O. The mutant PYM1 exhibited normal colony morphology, growth, and sporulation in nonfermentable media, whereas on fermentable media, the mutant overproduced acid, which led to poor growth and inhibition of sporulation. External control of the pH of the medium in fermentable media allowed close-to-normal growth and massive sporulation of the mutant. The presence of membrane-bound cytochrome caa 3 -OII and aa 3 -II subunits in strain PYM1 was confirmed by Western blots and haem C staining (COII subunit). Western blotting also revealed that in contrast to the wild-type – strain PYM1 contained the membrane-bound subunits caa 3 -COI and aa 3 -I, but in low amounts. The effect of several respiratory inhibitors on the respiratory system of strain PYM1 suggested that the terminal oxidase is highly resistant to KCN and CO and that a c-type cytochrome might be involved in the electron transfer sequence to the putative cytochrome bo. Received: 21 June 1996 / Accepted: 9 October 1996  相似文献   

18.
The respiratory chain components of higher plant mitochondria   总被引:5,自引:25,他引:5       下载免费PDF全文
Tightly coupled mitochondria have been prepared from a variety of plant sources: white potato (Solanum tuberosum), Jerusalem artichoke (Heliantus tuberosus), cauliflower buds (Brassica oleracea), and mung bean hypocotyls (Phaseolus aureus). Mitochondria with no appreciable coupling were also prepared from skunk cabbage spadices (Symplocarpus foetidus).

Room temperature difference spectra show that these mitochondria are very similar in the qualitative and quantitative composition of their electron carriers. The different cytochromes are present in the amounts of 0.1 to 0.3 mμmole per mg of mitochondrial protein. The molar ratios of the different electron carriers are, on the average: 0.7:0.7:1.0:3 to 4:10 to 15 respectively for cytochrome aa3, cytochromes b, cytochromes c, flavoproteins, and pyridine nucleotides.

From low temperature difference spectra carried out under particular experimental conditions, it can be deduced that these mitochondria contain 3 b cytochromes whose α bands are located at 552, 557, and 561 mμ, and 2 c cytochromes, one of which, a c1-like cytochrome, is firmly bound to the mitochondrial membrane. Cytochrome oxidase can be optically resolved into its 2 components a and a3.

For all kinds of mitochondria, the rates of oxidation of succinate are similar as well as the turnover of cytochrome oxidase (50-70 sec−1), regardless of the metabolic activities of the tissues. The number of mitochondria per cell appears to be the controlling factor of the intensity of tissue respiration.

  相似文献   

19.
We have tried to isolate respiratory deficient mutants of the amylolytic yeast Schwanniomyces castellii CBS 2863 after mutagenesis with acriflavine. One of the mutants called DR 12 has been studied in more detail. Pasteur effect present in the wild-type is lost in the mutant, on the contrast an obvious Crabtree effect was observed: fermentation was almost as active in aerobiosis as in anaerobiosis. Moreover, the rate of anaerobic fermentation of the mutant was almost twice that of the wild type. This mutant was cytrochrome b-deficient while the amount of the other cytochromes was larger than in the wild-type. Moreover, the level of these remaining cytochromes in the mutant was higher on non-repressive medium than on glucose medium. However, the fact that the mutant DR 12 retained a cyanide-sensitive respiration and that it was able to grow on ethanol as a non-fermentable substrate is noteworthy.  相似文献   

20.
Summary We have examined mitochondrial (mt) ribosome assembly and-function in five nuclear and six extranuclear mutants of Neurospora crassa which had previously been characterized as deficient in cytochromes b and aa 3. All six extranuclear mutants showed phenotypes similar to that previously described for the extranuclear [poky] mutant: small subunit-deficient with 19 S rRNA rapidly degraded. The nuclear mutants have the following phenotypes: 297-24 is mt small subunit deficient with 19 S RNA rapidly degraded. 289-56 is mt small subunit deficient but contains normal ratios of 19 S to 25 S RNA in whole mitochondria. 289-67 and 299-9 show defects in the processing of 25 S RNA leading to accumulation of a large precursor RNA. 289-4 is deficient in large subunits although a substantial, but less than normal, amount of 25 S RNA is present in the mitochondria.The present work provides new insight into the phenotypes of mt small subunit-deficient mutants. Previous studies using chloramphenicol suggest that some defects in the assembly of mt small subunits may arise secondarily as a result of inhibition of mt protein synthesis (LaPolla and Lambowitz, 1977; Lambowitz et al., 1979). Three mutants (289-56, 289-67 and 299-9) appear to show such defects. These strains contain incomplete mt small subunits which sediment more slowly than normal and are deficient in at least two proteins, S-5 and S-9. Correlation of mutant phenotypes with rates of mt protein synthesis in the different strains suggests that mt protein synthesis must be decreased to less than one half of the wild-type rate before secondary defects in mt small subunit assembly are observed. This threshold value is much lower than that which leads to gross deficiencies of cytochromes b and aa 3. Although several mutants have phenotypes suggestive of alterations in mt ribosomal proteins, no such alterations could be identified by two dimensional gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号