首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flavonoid pattern of the monotypic Turkish genus Leucocyclus consists of C-glycosylflavones (isovitexin; isoorientin and derivatives; several di-C-glycosylapigenins; schaftoside, isoschaftoside and vicenin-3; lucenin-2), of flavonol 3-O-glycosides (quercetin and kaempferol 3-O-rhamnoglucoside) and trace amounts of luteolin 7-O-rhamnoglucoside. The systematic significance of the flavonoid diversification within Leucocyclus as well as possible relationships to other genera of the Anthemideae are discussed.  相似文献   

2.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

3.
Heterogaura is a monotypic genus of the tribe Onagreae of the Onagraceae. It is endemic to south western Oregon and California. Four flavonol glycosides, kaempferol 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin 3-O-rhamnoglucoside and myricetin 3-O-glucoside, were found to occur in methanolic leaf extracts of each of the populations sampled. The presence of only flavonols is consistent with flavonoid analyses from other genera of the Onagreae, including Clarkia, the closest relative of Heterogaura.  相似文献   

4.
A series of kaempferol derivatives have been identified in fronds of three parental species of the Appalachian Asplenium complex. Asplenium platyneuron is characterised by the presence of the 7-glucoside of kaempferol 3,4′-dimethyl ether and also contains kaempferol 3,7-diglucoside, free and with an aliphatic acyl attachment. By contrast, A. rhizophyllum contains a remarkable caffeoyl complex of kaempferol glycosides, which appears to be chromatographically homogenous. However, on deacylation, the complex yields caffeic acid and the 7-glucoside, 3,7-diglucoside, 3-sophoroside-7-glucoside and 7,4′-diglucoside of kaempferol. Asplenium montanum, in addition to having previously characterised glycosylxanthones, has two further kaempferol derivatives. It has been confirmed that these various species specific flavonoids are inherited in an additive fashion in three interspecific hybrids.  相似文献   

5.
Catabolism of flavonol glucosides was investigated in plant cell suspension cultures using kaempferol 3-O-β-d-glucoside and kaempferol 7-O-β-d-glucoside labelled with 14C either in the glucose or in the flavonol moiety. Catabolic rates of glucosides were compared with those of free glucose and kaempferol. All substrates were degraded efficiently by cell cultures of mungbean, soybean, garbanzo bean and parsley. Based on 14CO2-formation, glucose from position 3 of kaempferol is 3–5 times more rapidly metabolized than that from position 7. The flavonol nucleus from both isomers is, however, oxidized to the same extent with a considerable portion of the flavonol being incorporated into insoluble polymeric cell material.  相似文献   

6.
Analyses of extracts among populations of the 14 species of Collomia revealed the occurrence of 13 mono-, di- and triglycosides based on the flavonoids, acacetin, kaempferol, patuletin and quercetin. The glycosides included those having arabinose, galactose, glucose and rhamnose as mono-, bio- or triosides at the 3-, 5-, 3,7- or 7-position. Analyses of floral extracts from ten species revealed the occurrence of two anthocyanins, cyanidin and delphinidin 3-(p-coumarylglucosyl)-5-glucoside. Nearly all the species express distinctive flavonoid patterns, although the differences are based on relatively minor changes in position or type of glycosidic substitution. Use of the minimum biosynthetic step distance (MBSD), an index of similarity, revealed that a mean of 5.6 steps separated the 14 species. The four perennial species of section Collomiastrum showed a high degree of similarity and differed consistently from species of the two annual sections Courtoisia and Collomia by lacking quercetin-5-glucoside and kaempferol-3-arabinosylgalactoside. In contrast, flavonoid patterns among species within sections Courtoisia and Collomia showed a relatively low degree of similarity. The dissimilarity between C. diversifolia and C. heterophylla (section Courtoisia) is consistent with their divergent patterns of pollen morphology and ecological distribution. Three groups of species within section Collomia were defined generally by shared patterns of flavonoids, which are correlated to some degree with floral, pollen and vegetative morphology.  相似文献   

7.
The anthocyanin and flavonol glycosides in Larkspur flowers (cv. Dark Blue Supreme) are delphinidin 3-di(p-hydroxybenzoyl)glucosylglucoside, kaempferol 3-robinobioside-7-rhamnoside (robinin), kaempferol 3-rutinoside, kaempferol 7-rhamnoside, and kaempferol 3-(caffeylgalactosylxyloside)-7-rhamnoside. As young flowers age the pH of epidermal tissue increases from 5·5 to 6·6 and the color of many of the cells changes from moderate reddish-purple to light purplish-blue. Many of the older cells also contain blue crystals. Visible absorption spectra of moderate reddish-purple and light purplish-blue cells were simulated with a solution of the anthocyanin (10−2 M) plus robinin (5 × 10−3 M) at pH 5·6 and 7·1, respectively. Changes in the absorption spectra of living tissue with heating or cooling and of concentrated solutions of the anthocyanin with dilution or moderate heat, indicate that in the natural state the pigment is present in an associated form.  相似文献   

8.
The phytochemical investigation on the aerial parts of Chromolaena congesta led to the isolation of nine flavonoids, known in the literature as genkwanin (1) kumatakenin (2) acacetin (3), kaempferol 3-methyl ether (4), apigenin (5), apigenin 5,7-dimethyl ether (6), apigenin 5-methyl ether (7), luteolin (8) and kaempferol (9). The chemical structures were established on the basis of spectral evidence. All the compounds were isolated from this species for the first time. The results from the present study provide further information about the flavonoids as taxonomic marker of the genus Chromolaena, and the chemotaxonomic significance of these compounds were also summarized.  相似文献   

9.
《Phytochemistry》1987,26(12):3331-3334
Four new acylated flavonol glycosides have been isolated and identified from the leaves of Strychnos variabilis: quercetin 3-(4″-trans-p-coumaroyl)robinobioside-7-glucoside (variabiloside A) and its cis derivative (variabiloside B), kaempferol 3-(4″-trans-p-coumaroyl)robinobioside-7-glucoside (variabiloside C) and its cis derivative (variabiloside D).  相似文献   

10.
More than 50 collections of 12 species forming the A. ptarmica group have been analysed for their leaf flavonoids. C-Glycosylflavones (iso-orientin and derivatives, vicenins and lucenins) were found to be the main components, whereas flavonol 3-O-glycosides (based on quercetin and kaempferol) and flavone 7-O-glycosides (based on luteolin and diosmetin) were of restricted distribution. Infraspecific variability regarding C-glycosylflavones was observed in most of the taxa investigated. By contrast, flavonol 3-O-glycosides appeared to be stable characters and were sometimes accumulated instead of C-glycosylflavones. In addition to the flavonoids, the geographical distribution patterns and the possible origin of the A. sibirica in Eastern Asia are briefly discussed.  相似文献   

11.
From the aerial parts of Helichrysum chasmolycicum P.H Davis, which is an endemic species in Turkey, the flavonoids apigenin, luteolin, kaempferol, 3,5-dihydroxy-6,7,8-trimethoxyflavone, 3,5-dihydroxy-6,7,8,4′-tetramethoxyflavone, apigenin 7-O-glucoside, apigenin 4′-O-glucoside, luteolin 4′-O-glucoside, luteolin 4′,7-O-diglucoside, kaempferol 3-O-glucoside, kaempferol 7-O-glucoside and quercetin 3-O-glucoside were isolated. The methanol extract of the aerial parts of H. chasmolycicum showed antioxidant activity by DPPH method (IC50 0.92 mg/mL). Antimicrobial activity test was performed on the B, D, E extracts and also 3,5-dihydroxy-6,7,8-trimethoxyflavone and kaempferol 3-O-glucoside which were the major flavonoid compounds obtained from aerial parts of H. chasmolycicum by microbroth dilutions technique. The E (ethanol-ethyl acetate) extract showed moderate antimicrobial activity against Pseudomonas aeruginosa, B (petroleum ether-60% ethanol-chloroform) extract and 3,5-dihydroxy-6,7,8-trimethoxyflavone showed moderate antifungal activity against Candida albicans.  相似文献   

12.
A survey of leaf flavonoids and isoflavonoids in several taxa of the genus Glycne subgenus Glycine was undertaken to see if this would help interpret inter- and intraspecific relationships in the genus. C-Glycosylflavones based on apigenin were found in Glycine tomentelia, G. tabacina and G. falcata. Glycosides of quercetin and kaempferol were also detected in G. tabacina. In the cultivated soybean, G. max, and its wild annual relative, G. soja, only quercetin and kaempferol glycosides have been reported. Interspecific hybrids of Glycine species sometimes show additive flavonoid patterns in F1 hybrid leaf tissue. All perennial wild species analysed including Glycine canescens and G. latifolia have the isoflavonoids genistin (genesitein 7-O-glucoside), daidzein and coumestrol in the leaves.  相似文献   

13.
A survey of the flavonoids of some 92 species of Australian Cyperus, mainly of subtropical or tropical origin, has confirmed a correlation previously reported in this family between flavonoid pattern and plant geography. The pattern found was similar to that of African and South American Cyperaceae, particularly in the occurrence of the rare marker substance, luteolin 5-methyl ether. Tricin and luteolin are relatively common, in glycosidic form, in the leaves while the flavonol quercetin is infrequent. When present, quercetin occurs either in glycosidic form or free as a methyl ether. The 3-monomethyl and 3, 7-dimethyl ethers of kaempferol and quercetin and the 3, 7, ?-trimethyl ether of quercetin are reported for the first time from the Cyperaceae. The flavonoid pattern of inflorescences is distinct from that of the leaves in that tricin is not detectable and that luteolin 5-methyl ether appears to be replaced by 7, 3′, 4′-trihydroxyflavone. In addition, the aurone aureusidin is more commonly present than in the leaves and is occasionally accompanied by two further aurones. The glycoxanthones mangiferin and isomangiferin occur rarely in all three species examined in the section Haspani, i.e. in C. haspan, C. prolifer and C. tenuispica. In general, however, the flavonoid data do not offer any markers which separate off different sections within the genus; there are, however, some significant correlations between the frequency of the flavonoid classes and subgeneric groupings.  相似文献   

14.
The 7-glucosides and 3,7-diglucosides of kaempferol and isorhamnetin were identified in leaves and flowers of Sinapis arvensis. Additionally, the 3-sophoroside-7-glucosides of kaempferol, quercetin and isorhamnetin were found in leaves of S. arvensis and Brassica oleracea. Two dimensional surveys of leaf extracts of 27 species and cultivars of Brassica and Sinapis showed that the same pattern occurred in most species. B. tournefortii and S. flexuosa were exceptional in having flavonol 3-monosides and 3-diglycosides instead. The results suggest that it is the glycosidic patterns, rather than the distribution of the flavonol aglycones, which are likely to be of taxonomic value for distinguishing groups of species or genera within the Cruciferae.  相似文献   

15.
The European dewberry (Rubus caesius) is a perennial shrub that is widely distributed in Europe but can also be found in North America. In folk medicine, the European dewberry is used to treat hyperglycaemia, diarrhoea and inflammation. LC-MS analysis of the European dewberry confirmed the presence of 35 compounds, mostly flavonoids, phenolic acids and derivatives of ellagic acid. Phytochemical analysis of R. caesius leaves led to the isolation of nine phenolics, namely: quercetin 3-O-β-D-rutinoside (1), kaempferol 3-O-β-D-glucuronide (2), quercetin 3-O-β-D-glucuronide (3), methyl brevifolincarboxylate (4), kaempferol 3-O-β-D-(6″-O-(E)-p-coumaroyl)-glucoside (5), kaempferol (6), quercetin (7), pedunculagin (8), and ellagic acid (9). Compounds 18 were isolated from this species for the first time. The chemophenetic significance was discussed.  相似文献   

16.
A fast and efficient preparative HPLC-PDA method was developed for the separation and isolation of four rare isomeric kaempferol diglycosides from leaves of Prunus spinosa L. The separation procedure of the enriched diglycoside fraction of the 70% (v/v) aqueous methanolic leaf extract was first optimised on analytical XBridge C18 column (100 mm × 4.6 mm i.d., 5 μm) and central composite design combined with response surface methodology was utilized to establish the optimal separation conditions. The developed method was directly transferred to preparative XBridge Prep C18 column (100 mm × 19 mm i.d., 5 μm) and the final separation was accomplished by isocratic elution with 0.5% acetic acid-methanol-tetrahydrofuran (75.2:16.6:8.2, v/v/v) as the mobile phase, at a flow rate of 13.6 mL/min, in less than 12 min for a single run. Under these conditions, four flavonoid diglycosides: kaempferol 3-O-α-l-arabinofuranoside-7-O-α-l-rhamnopyranoside, kaempferol 3,7-di-O-α-l-rhamnopyranoside (kaempferitrin), and reported for the first time for P. spinosa kaempferol 3-O-β-d-xylopyranoside-7-O-α-l-rhamnopyranoside (lepidoside) and kaempferol 3-O-α-l-arabinopyranoside-7-O-α-l-rhamnopyranoside, were isolated in high separation yield (84.8–94.5%) and purity (92.45–99.79%). Their structures were confirmed by extensive 1D and 2D NMR studies. Additionally, the UHPLC-PDA-ESI–MS3 qualitative profiling led to the identification of twenty-one phenolic compounds and confirmed that the isolates were the major components of the leaf material.  相似文献   

17.
Glycosylation plays a major role in the chemical diversity of flavonoids. The wide diversity of the family-1 glycosyltransferase (UGT) impairs the determination of the biochemical function solely from its primary sequence. Here we combined differential expression and target metabolomic analysis in various Crocus species to identify a gene that is key in determining the flavonoid composition of Crocus species that belong to the Crocus series. UGT703B1 recognizes isorhamnetin and kaempferol as substrates in vitro. In addition, UGT703B1 expression was found to be highly correlated with the presence of kaempferol 7-O-biglucoside-3-O-β-glucoside and isorhamnetin-3,7-O-diglucoside. These flavonols were present in C. sativus and C. cartwrightianus albus, both from series Crocus but absent in Crocus species from the other series analyzed. Further, the presence of both flavonols was associated with the expression of UGT703B1, and this expression was correlated with the presence of the UGT703B1 coding gene, with the exception of C. cancellatus, whose genomic sequence was present but contained a shorter intronic sequence and promoter alterations, suggesting the presence of regulatory sequences in the deleted part of that intron and promoter important for UGT703B1 expression. Overall, the data obtained supports the involvement of UGT703B1 in the formation of specific kaempferol and isorhamnetin glucosides, while demonstrating that the integration of metabolomic and differential expression analysis is a versatile tool for understanding a multigene family of UGTs in Crocus.  相似文献   

18.
Eight kinds of flavonoids were isolated by crystallization or paper-chromatography from the tepals of several cactaceous plants, i.e.,Astrophytum ornatum Web.,Notocactus apricus A. Berg.,Echinopsis huotii Lab.,Aylostera pseudodeminuta Backbg. andNeochilenia napina Backbg. The structures of six flavonols were determined by UV spectral means and co-PC comparison as quercetin and its 7-O-galactoside (coptiside II), kaempferol and its 3-O-rhamnosylglucoside (nicotiflorin), and isorhamnetin and its 3-O-rhamnosylglucoside (narcissin). The remaining two flavonoids were partially characterized as kaempferol 3, 7-O-diglycoside and 5-hydroxy-3,4′-oxygenated flavonol derivative.  相似文献   

19.
Leaf flavonoid glycosides of Eucalyptus camaldulensis were identified as kaempferol 3-glucoside and 3-glucuronide; quercetin 3-glucoside, 3-glucuronide, 3-rhamnoside, 3-rutinoside and 7-glucoside, apigenin 7-glucuronide and luteolin 7-glucoside and 7-glucuronide. Two chemical races were observed based on the flavonoid glycosides. These races correspond to the northern and southern populations of species growing in Australia. The Middle Eastern species examined were found to belong to the southern Australian chemical race. The major glycosides of E. occidentalis proved to be quercetin and myricetin 3-glucuronide.  相似文献   

20.
Three flavonoids were isolated from the aerial part of the wood horsetail (Equisetum silvaticum L.); two of them were found for the first time. The compounds were identified as kaempferol, kaempferol 3-O-β-D-galactopyranosyl-7-O-α-L-rhamnopyranoside and kaempferol 3-O-rutinosyl-7-O-L-rhamnopyranoside on the basis of the chemical transformations and IR, UV, 1H-NMR and mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号