首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

2.
Extracts of Pseudomonas C grown on methanol as a sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts. The addition of D-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when D-ribulose 5-phosphate was present in the assay mixtures. The amount of radioactivity found in CO2, was 6;8-times higher when extracts of methanol-grown Pseudomonas C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate. These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

3.
4.
Initial velocity studies and product inhibition studies were conducted for the forward and reverse reactions of formaldehyde dehydrogenase (formaldehyde: NAD oxidoreductase, EC 1.2.1.1) isolated from a methanol-utilizing yeast Candida boidinii. The data were consistent with an ordered Bi-Bi mechanism for this reaction in which NAD+ is bound first to the enzyme and NADH released last. Kinetic studies indicated that the nucleoside phosphates ATP, ADP and AMP are competitive inhibitors with respect to NAD and noncompetitive inhibitors with respect to S-hydroxymethylglutathione. The inhibitions of the enzyme activity by ATP and ADP are greater at pH 6.0 and 6.5 than at neutral or alkaline pH values. The kinetic studies of formate dehydrogenase (formate:NAD oxidoreductase, EC 1.2.1.2) from the methanol grown C. boidinii suggested also an ordered Bi-Bi mechanism with NAD being the first substrate and NADH the last product. Formate dehydrogenase the last enzyme of the dissimilatory pathway of the methanol metabolism is also inhibited by adenosine phosphates. Since the intracellular concentrations of NADH and ATP are in the range of the Ki values for formaldehyde dehydrogenase and formate dehydrogenase the activities of these main enzymes of the dissimilatory pathway of methanol metabolism in this yeast may be regulated by these compounds.  相似文献   

5.
Formaldehyde dehydrogenase and formate dehydrogenase were purified 45- and 16-fold, respectively, from Hansenula polymorpha grown on methanol. Formaldehyde dehydrogenase was strictly dependent on NAD and glutathione for activity. The K mvalues of the enzyme were found to be 0.18 mM for glutathione, 0.21 mM for formaldehyde and 0.15 mM for NAD. The enzyme catalyzed the glutathine-dependent oxidation of formaldehyde to S-formylglutathione. The reaction was shown to be reversible: at pH 8.0 a K mof 1 mM for S-formylglutathione was estimated for the reduction of the thiol ester with NADH. The enzyme did not catalyze the reduction of formate with NADH. The NAD-dependent formate dehydrogenase of H. polymorpha showed a low affinity for formate (K mof 40 mM) but a relatively high affinity for S-formylglutathione (K mof 1.1 mM). The K mvalues of formate dehydrogenase in cell-free extracts of methanol-grown Candida boidinii and Pichia pinus for S-formylglutathione were also an order of magnitude lower than those for formate. It is concluded that S-formylglutathione rather than free formate is an intermediate in the oxidation of methanol by yeasts.  相似文献   

6.
  1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate.
  2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme.
  3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions.
  4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured.
  5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase.
  相似文献   

7.
A primary alcohol dehydrogenase has been purified from Methylococcus capsulatus (Texas strain). The purified enzyme catalyzes the oxidation of methanol and formaldehyde to formate; other primary alcohols are oxidized to their corresponding aldehydes. Ammonium ions are required for enzyme activity. The enzyme has a molecular weight of 120,000 daltons and consists of two 62,000 molecular-weight subunits which dissociate at acidic pH. The enzyme is similar to an alcohol dehydrogenase enzyme isolated from Pseudomonas sp. M27.  相似文献   

8.
Pseudomonas C can grow on methanol, formaldehyde, or formate as sole carbon source. It is proposed that the assimilation of carbon by Pseudomonas C grown on different C1 growth substrates proceeds via one of two metabolic pathways, the serine pathway or the allulose pathway (the ribose phosphate cycle of formaldehyde fixation). This contention is based on the distribution of two key enzymes, each of which appears to be specifically involved in one of the assimilation pathways, glycerate dehydrogenase (serine pathway) and hexose phosphate synthetase (allulose pathway). The assimilation of methanol in Pseudomonas C cells appears to occur via the allulose pathway, whereas the utilization of formaldehyde or formate in cells grown on formaldehyde or formate as sole carbon sources appears by the serine pathway. When methanol is present together with formaldehyde or formate in the growth medium, the formaldehyde or formate is utilized by the allulose pathway.  相似文献   

9.
Formaldehyde hydrogenase and formate dehydrogenase were purified 130-fold and 19-fold respectively from Candida boidinii grown on methanol. The final enzyme preparations were homogenous as judged by acrylamide gel electrophoresis and by sedimentation in an ultracentrifuge. The molecular weights of the enzymes were determined by sedimentation equilibrium studies and calculated as 80000 and 74000 respectively. Dissociation into subunits was observed by treatment with sodium dodecylsulfate. The molecular weights of the polypeptide chains were estimated to be 40000 and 36000 respectively. The NAD-linked formaldehyde dehydrogenase specifically requires reduced glutathione for activity. Besides formaldehyde only methylglyoxal served as a substrate but no other aldehyde tested. The Km values were found to be 0.25 mM for formaldehyde, 1.2 mM for methylglyoxal, 0.09 mM for NAD and 0.13 mM for glutathione. Evidence is presented which demonstrates that the reaction product of the formaldehyde-dehydrogenase-catalyzed oxidation of formaldehyde is S-formylglutathione rather than formate. The NAD-linked formate dehydrogenase catalyzes specifically the oxidation of formate to carbon dioxide. The Km values were found to be 13 mM for formate and 0.09 mM for NAD.  相似文献   

10.
Acetobacter methanolicus MB58 can grow on methanol. Since this substrate exhibits to be energy deficient there must be a chance to oxidize methanol to CO2 merely for purpose of energy generation. For the assimilation of methanol the FBP variant of the RuMP pathway is used. Hence methanol can be oxidized cyclically via 6-phosphogluconate. Since Acetobacter methanolicus MB58 possesses all enzymes for a linear oxidation via formate the question arises which of both sequences is responsible for generation of the energy required. In order to clarify this the linear sequence was blocked by inhibiting the formate dehydrogenase with hypophosphite and by mutagenesis inducing mutants defective in formaldehyde or formate dehydrogenase. It has been shown that the linear dissimilatory sequence is indispensable for methylotrophic growth. Although the cyclic oxidation of formaldehyde to CO2 has not been influenced by hypophosphite and with mutants both the wild type and the formaldehyde dehydrogenase defect mutants cannot grown on methanol. The cyclic oxidation of formaldehyde does not seem to be coupled to a sufficient energy generation, probably it operates only detoxifying and provides reducing equivalents for syntheses. The regulation between assimilation and dissimilation of formaldehyde in Acetobacter methanolicus MB58 is discussed.Abbreviations ATP Adenosine-5-triphosphate - DCPIP 2,6-dichlorphenolindophenol - DW dry weight - ETP electron transport phosphorylation - FBP fructose-1,6-bisphosphate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PMS phenazine methosulfate - RuMP ribulose monophosphate - Ru5P ribulose-5-phosphate - SDS sodiumdodecylsulphate - TCA tricarboxylic acid - TYB toluylene blue Dedicated to Prof. Dr. Dr. S. M. Rapoport on occasion of his 75th birthday  相似文献   

11.
Formaldehyde dehydrogenase (EC 1.2.1.1) and formate dehydrogenase (EC 1.2.1.2) have been isolated in pure form from pea seeds by a rapid procedure which employs column chromatographies on 5′-AMP-Sepharose, Sephacryl S-200, and DE32 cellulose. The apparent molecular weights of formaldehyde and formate dehydrogenases are, respectively, 82,300 and 80,300 by gel chromatography, and they both consist of two similar subunits. The isoelectric point of formaldehyde dehydrogenase is 5.8 and that of formate dehydrogenase is 6.2. The purified formate dehydrogenase gave three corresponding protein and activity bands in electrophoresis and isoelectric focusing on polyacrylamide gel whereas formaldehyde dehydrogenase gave only one band. Formaldehyde dehydrogenase catalyzes the formation of S-formylglutathione from formaldehyde, and glutathione. Formate dehydrogenase can, besides formate, also use S-formylglutathione and two other formate esters as substrates. S-Formylglutathione has a lower Km value (0.45 mm) than formate (2.1 mm) but the maximum velocity of S-formylglutathione is only 5.5% of that of formate. Pea extracts also contain a highly active S-formylglutathione hydrolase which has been separated from glyoxalase II (EC 3.1.2.6) and partially purified. S-Formylglutathione hydrolase is apparently needed between formaldehyde and formate dehydrogenases in the metabolism of formaldehyde in pea seeds, in contrast to what was recently reported for Hansenula polymorpha, a yeast grown on methanol.  相似文献   

12.
Industrial biocatalytic reduction processes require the efficient regeneration of reduced cofactors for the asymmetric reduction of prochiral compounds to chiral intermediates which are needed for the production of fine chemicals and drugs. Here, we present a new engineering strategy for improved NADH regeneration based on the Pichia pastoris methanol oxidation pathway. Studying the kinetic properties of alcohol oxidase (AOX), formaldehyde dehydrogenase (FLD) and formate dehydrogenase (FDH) and using the derived kinetic data for subsequent kinetic simulations of NADH formation rates led to the identification of FLD activity to constitute the main bottleneck for efficient NADH recycling via the methanol dissimilation pathway. The simulation results were confirmed constructing a recombinant P. pastoris strain overexpressing P. pastoris FLD and the highly active NADH-dependent butanediol dehydrogenase from S. cerevisiae. Employing the engineered strain, significantly improved butanediol production rates were achieved in whole-cell biotransformations.  相似文献   

13.
The synthesis of methanol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase by pink pigmented facultative methylotrophs (PPFM) has been studied during growth on C1 and multicarbon substrates. In batch cultures, the methanol dehydrogenase activities were higher during slow growth on non-C1-compounds than during fast growth on methanol. Derepression of this enzyme also occurred at slow growth in methanol-limited chemostat culture. Formaldehyde dehydrogenase and formate dehydrogenase remained largely repressed during growth on multicarbon substrates.  相似文献   

14.
Abstract For a number of years we have tried to isolate versatile methylotrophic bacteria employing the ribulose monophosphate (RuMP) cycle of formaldehyde fixation. Recently this has resulted in the development of techniques for the selective enrichment and isolation in pure culture of Bacillus strains able to grow in methanol mineral medium over a temperature range between 35 and 60°C. At the optimum growth temperatures (50–55°C), these isolates display doubling times between 40 and 80 min. The metabolism of the strains studied is strictly respiratory. Methanol assimilation is exclusively via the RuMP cycle variants with the fructose bisphosphate (FBP) aldolase cleavage and transketolase (TK)/transaldolase (TA) rearrangement. Whole cells were unable to oxidize formate, and no activities of NAD-(in)dependent formaldehyde and formate dehydrogenases were detected. Formaldehyde oxidation most likely proceeds via the so-called dissimilatory RuMP cycle. The initial oxidation of methanol is catalyzed by an NAD-dependent methanol dehydrogenase present as an abundant protein in all strains. The enzyme from Bacillus sp. C1 has been purified and characterized.  相似文献   

15.
A number of bacterial strains have been isolated and investigated in our search for a promising organism in the production of single-cell protein from methanol. Strain L3 among these isolates was identified as an obligate methylotroph which grew only on methanol and formaldehyde as the sole sources of carbon and energy. The organism also grew well in batch and chemostat mixed-substrate cultures containing methanol, formaldehyde, and formate. Although formate was not utilized as a sole carbon and energy source, it was readily taken up and oxidized by either formaldehyde- or methanol-grown cells. The organism incorporated carbon by means of the ribulose monophosphate pathway when growing on either methanol, formaldehyde, or various mixtures of C1 compounds. Its C1-oxidation enzymes included phenazine methosulfate-linked methanol and formaldehyde dehydrogenase and a nicotinamide adenine dinucleotide-linked formate dehydrogenase. Identical inhibition by formaldehyde of the first two dehydrogenases suggested that they are actually the same enzyme. The organism had a rapid growth rate, a high cell yield in the chemostat, a high protein content, and a favorable amino acid distribution for use as a source of single-cell protein. Of special interest was the ability of the organism to utilize formaldehyde via the ribulose monophosphate cycle.  相似文献   

16.
A number of bacterial strains have been isolated and investigated in our search for a promising organism in the production of single-cell protein from methanol. Strain L3 among these isolates was identified as an obligate methylotroph which grew only on methanol and formaldehyde as the sole sources of carbon and energy. The organism also grew well in batch and chemostat mixed-substrate cultures containing methanol, formaldehyde, and formate. Although formate was not utilized as a sole carbon and energy source, it was readily taken up and oxidized by either formaldehyde- or methanol-grown cells. The organism incorporated carbon by means of the ribulose monophosphate pathway when growing on either methanol, formaldehyde, or various mixtures of C1 compounds. Its C1-oxidation enzymes included phenazine methosulfate-linked methanol and formaldehyde dehydrogenase and a nicotinamide adenine dinucleotide-linked formate dehydrogenase. Identical inhibition by formaldehyde of the first two dehydrogenases suggested that they are actually the same enzyme. The organism had a rapid growth rate, a high cell yield in the chemostat, a high protein content, and a favorable amino acid distribution for use as a source of single-cell protein. Of special interest was the ability of the organism to utilize formaldehyde via the ribulose monophosphate cycle.  相似文献   

17.
Summary The oxidation of formaldehyde to carbon dioxide in cell-free extracts of methanol-grown Candida boidinii has been investigated. A specific NAD-dependent formaldehyde dehydrogenase requiring reduced glutathione has been partially purified. Furthermore, a NAD-linked formate dehydrogenase was found in cell-free extracts. The synthesis of these two enzymes is induced by methanol and repressed by glucose. The possible significance of these enzymes in the energy-generating system is discussed.  相似文献   

18.
The enzymology of methanol utilization in thermotolerant methylotrophic Bacillus strains was investigated. In all strains an immunologically related NAD-dependent methanol dehydrogenase was involved in the initial oxidation of methanol. In cells of Bacillus sp. C1 grown under methanol-limiting conditions this enzyme constituted a high percentage of total soluble protein. The methanol dehydrogenase from this organism was purified to homogeneity and characterized. In cell-free extracts the enzyme displayed biphasic kinetics towards methanol, with apparent K m values of 3.8 and 166 mM. Carbon assimilation was by way of the fructose-1,6-bisphosphate aldolase cleavage and transketolase/transaldolase rearrangement variant of the RuMP cycle of formaldehyde fixation. The key enzymes of the RuMP cycle, hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), were present at very high levels of activity. Failure of whole cells to oxidize formate, and the absence of formaldehyde-and formate dehydrogenases indicated the operation of a non-linear oxidation sequence for formaldehyde via HPS. A comparison of the levels of methanol dehydrogenase and HPS in cells of Bacillus sp. C1 grown on methanol and glucose suggested that the synthesis of these enzymes is not under coordinate control.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPI hexulose-6-phosphate isomerase - MDH methanol dehydrogenase - ADH acohol dehydrogenase - PQQ pyrroloquinoline, quinone - DTT dithiothreitol - NBT nitrobluetetrazolium - PMS phenazine methosulphate - DCPIP dichlorophenol indophenol  相似文献   

19.
Formaldehyde and methylformate affect the growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes. The presence of both intermediates in the feeding medium caused an increase in biomass yield and productivity and a decrease in the specific rate of methanol consumption. In the presence of formaldehyde, the activity of formaldehyde dehydrogenase and formate dehydrogenase was essentially increased, whereas the activity of methanol oxidase was decreased. On the contrary, the presence of methylformate caused an increase of the activity of methanol oxidase and a decrease of the activity of formaldehyde dehydrogenase and formate dehydrogenase. Interpretations concerning the yeast behavior in the presence of intermediate oxidation products were considered and discussed.  相似文献   

20.
A mutant of Methylobacterium extorquens AM1 with lesions in genes for three formate dehydrogenase (FDH) enzymes was previously described by us (L. Chistoserdova, M. Laukel, J.-C. Portais, J. A. Vorholt, and M. E. Lidstrom, J. Bacteriol. 186:22-28, 2004). This mutant had lost its ability to grow on formate but still maintained the ability to grow on methanol. In this work, we further investigated the phenotype of this mutant. Nuclear magnetic resonance experiments with [13C]formate, as well as 14C-labeling experiments, demonstrated production of labeled CO2 in the mutant, pointing to the presence of an additional enzyme or a pathway for formate oxidation. The tungsten-sensitive phenotype of the mutant suggested the involvement of a molybdenum-dependent enzyme. Whole-genome array experiments were conducted to test for genes overexpressed in the triple-FDH mutant compared to the wild type, and a gene (fdh4A) was identified whose translated product carried similarity to an uncharacterized putative molybdopterin-binding oxidoreductase-like protein sharing relatively low similarity with known formate dehydrogenase alpha subunits. Mutation of this gene in the triple-FDH mutant background resulted in a methanol-negative phenotype. When the gene was deleted in the wild-type background, the mutant revealed diminished growth on methanol with accumulation of high levels of formate in the medium, pointing to an important role of FDH4 in methanol metabolism. The identity of FDH4 as a novel FDH was also confirmed by labeling experiments that revealed strongly reduced CO2 formation in growing cultures. Mutation of a small open reading frame (fdh4B) downstream of fdh4A resulted in mutant phenotypes similar to the phenotypes of fdh4A mutants, suggesting that fdh4B is also involved in formate oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号