首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mode of association of microtubules (MTs) with the plasmalemma in epidermal tendon cells of the river crab, Potamon dehaani was studied by thin-section electron microscopy. In the leg muscle, the tendon cells connect striated muscle cells with the cuticle, forming specialized junctions at both ends. At the muscle-tendon cell junction, the apposed plasmalemmas are interdigitated in a zig-zag pattern separated by a uniform space of about 50 nm, where the basal lamina is shared by two cells. At the tendon cell-cuticle junction, the plasmalemma of the tendon cell forms many conical invaginations, into which dense fibrous material extends from the cuticle. Inside the tendon cell, numerous microtubules run parallel to the direction of tension transmission and are arranged into parallel bundles of various sizes. Within such bundles, fine filamentous structures cross-link adjacent MTs. MTs span the entire length of the cell and attach at their both ends to the junctional domains of the plasmalemma. The junctional plasmalemma is characterized by formation of an electron-dense undercoat, through which MTs are connected with the plasmalemma proper. The ultrastructural features of MT association with the plasmalemma are basically the same at both junctions. At the junctions, MTs usually terminate with free ends and are linked laterally to the plasmalemmal undercoat with fine filamentous structures. These observations emphasize the role of the plasmalemmal undercoat as a device of the attachment of MTs to the plasmalemma.  相似文献   

2.
R. D. Preston 《Planta》1988,174(1):67-74
A brief review is given of the changing views over the years, as knowledge of wall structure has developed, concerning the mechanism whereby cellulose chains may be oriented. This leads to an examination of current concepts, particularly those concerning microtubules. It is shown that none of the mechanisms suggested whereby microtubules might cause orientation of cellulose microfibrils is consistent with the known range of molecular architectures found in plant cell walls. It is further concluded that any mechanism which necessitates an indissoluble link between the plasmalemma and the cellulose-synthesising complex at the tip of a microfibril is unacceptable. A new proposal is presented in which it is speculated that both microtubules and microfibrils are oriented by a mechanism separate from both. It is shown that if two vectors are contemplated, one parallel to cell length and one at right angles, and a sensor exists on the plasmalemma surface which responds to changes in the vectors, then all known wall structures may be explained. The possible nature of the vectors and the sensor are considered.  相似文献   

3.
The fine structure of the cilium was examined by freeze-fracture-etch studies. In the interior of the transitional region, three types of plate structures were clearly observed. While the terminal plate contained fine fibrillar linkers suspending the central core plates from its peripheral doublet microtubules, two other types of plates had no suspending linkers. At the upper level of transitional region, one of the central microtubules elongated deeper than the other in the space surrounded by ring structure. Axosome-like structure was not observed in our replicas. Central vesicle of the basal body was also suspended by fine fibrillar linkers from peripheral triplets. Though membrane particles of ciliary necklace were recognized on protoplasmic and external fracture faces, and the external surface, particle arrays were not observed on protoplasmic surface. Instead, Y-shaped, cross bridges, one end of which attached to the doublet microtubules, merged in the circular ridge structure at opposite ends. This circular ridge structure at the necklace region may play a role as an anchoring site of both membrane particles of the necklace and cross bridges from peripheral doublet microtubules.  相似文献   

4.
Plasmalemma fine structure in isolated tobacco mesophyll protoplasts   总被引:1,自引:1,他引:0  
Summary Tobacco mesophyll protoplasts have been examined by electron microscopy during isolation procedures and after 24 hours culture in a medium known to support cell wall regeneration. During isolation the plasmalemma shows little structural differentiation apart from the formation of small vacuoles in the cytoplasm. After 24 hours of culture, several types of activity are seen at the plasmalemma surface. Microtubules, profiles of endoplasmic reticulum, electron dense granules and coated vesicles are associated with the inner surface of the membrane. External to the plasmalemma fibrillar structures occur, both as extensive networks and as individual fibrils apparently associated with the membrane itself. Techniques and criteria for electron microscopy are presented, and the results discussed in terms of plasmalemma function and the regeneration of the cell wall.  相似文献   

5.
On the ultrastructure of differentiating secondary xylem in willow   总被引:1,自引:1,他引:0  
A. W. Robards 《Protoplasma》1968,65(4):449-464
Summary Studies of differentiating xylem inSalix fragilis L. show the immediate cambial derivatives to be ultrastructurally similar. The Golgi apparatus is important at all stages of wall synthesis, possibly producing (amongst other substances) hemicellulose material which is carried to the wall in vesicles or multivesicular bodies. The endoplasmic reticulum also contributes one or more components to the developing wall: at some stages during differentiation the endoplasmic reticulum produces electron opaque bodies which appear to be guided towards the wall by microtubules. Compact structures formed from concentric membranes (myelin-like bodies) have been found joined to rough endoplasmic reticulum, but their presence is not explained.Two types of plasmalemma elaboration occur: invagination of the plasmalemma itself to form vesicles which may contain cytoplasmic material; and vesicles between the plasmalemma and cell wall which are the result of single vesicles or multivesicular bodies traversing the plasmalemma. Both systems provide a means for transporting cytoplasmic material across the plasmalemma.Microtubules have been seen associated with all vesicles derived from the cytoplasm which appear to be moving towards the wall. The presence of microtubules may generally be explained in terms of orientation of vesicles, even if they also happen coincidentally to parallel the supposed orientation of microfibrils in the wall itself. It is possible to resolve connections between the microtubules and the plasmalemma.  相似文献   

6.
Microtubules and coated vesicles in guard-cell protoplasts ofAllium cepa L.   总被引:1,自引:0,他引:1  
Protoplasts were prepared from the guard cells ofA. cepa. Epidermal peels taken from expanding green leaves and largely free of mesophyll were treated with Cellulysin, and protoplasts were harvested after 18 h of digestion. That the protoplasts were derived from guard cells was ascertained from their characteristic vacuolar autofluorescence and from observations showing that all other epidermal cells are killed in the peeling procedure. The protoplasts proved to be a good system with which to view the cell cortex and inner surface of the plasmalemma. The lysis of cells adhering to polylysine-treated, Formvar-coated grids, followed by negative staining in uranyl acetate, showed that many microtubules normally present in ordered arrays in situ remain closely applied to the inner surface of the plasmalemma in protoplasts. In addition, numerous vesiculate elements including coated vesicles and/or pits are present amongst the microtubules. Similar vesicles are evident in thin sections of fixed, embedded guard cells and protoplasts. The significance of these structures in the cell cortex is discussed.  相似文献   

7.
K. Mizuno 《Protoplasma》1995,186(1-2):99-112
Summary Filamentous structures of 7–10 nm in diameter were regenerated in vitro from a soluble 50 kDa protein (p50) that had been isolated from mung bean seedlings and from cultured tobacco cells. The polymerization of p50 in vitro was dependent on the presence of guanosine nucleotides, in particular, guanosine monophosphate (GMP). Unlike tubulin, p50 is a stable basic protein with the ability to polymerize even after heat treatment for 1 min at 70 °C. Furthermore, the freeze-dried powder of p50 retained the ability to regenerate filamentous structures after it had been dissolved in polymerization buffer to which GMP was then added. Two monoclonal antibodies against p50 were obtained. These antibodies stained the filamentous structures that extended from the surface of the nucleus to the cell periphery in interphase tobacco cells. They stained spindles and phragmoplasts as did tubulin-specific antibodies. They also stained fibrillar structures that were present around the spindle poles and the telophase daughter nuclei in which no microtubules were present. These results suggest that a part of the cell's complement of p50 may be associated with microtubules in dividing cells while the rest may itself form unique fibrillar structures. The antibodies against p50 did not stain cortical microtubules or the pre-prophase band of microtubules. The antibody against p50 also stained intermediate filament-like structures in cultured animal cells. The formation of microtubules in vitro was markedly stimulated and the assembled microtubules were greatly stabilized by p50. Further investigation of p50 is indispensable for the understanding of properties and function of intermediate-sized filaments in higher plant cells.Abbreviations EPC Sepharose ethyl N-phenyl-carbamate conjugated Sepharose - p50 50 kDa protein  相似文献   

8.
Summary The distribution of particles on the surface of the plasmalemma in the collenchyma of Apium graveolens was studied by the freeze-etching technique. The aim was to determine whether the distribution of particles was related to the known longitudinal or transverse orientation of cellulose microfibrils in different layers of the walls of these cells. Preliminary statistical studies have shown no obvious correlation between particle distribution and microfibril orientation although the distribution appeared uniform rather than random. Qualitatively, the particle distribution on the plasmalemma of differentiating xylem fibres of Eucalyptus maculata and of the cortical parenchyma of Avena sativa coleoptiles appeared to be similar to that observed on the plasmalemma of Apium. No correlation between the particle distribution and the microfibril orientation known to exist in the walls of these cells could be discerned.The orientation of microtubules in the cytoplasm of collenchyma cells of Apium graveolens was parallel to the microfibril orientation in many instances, but exceptions were noted. A possible interpretation for this variation is discussed. It is concluded that the microtubules are the structures which are most likely to be involved in determining microfibril orientation in the cell wall.  相似文献   

9.
10.
Isolation and properties of the plasmalemma in yeast   总被引:15,自引:0,他引:15  
Summary A method is described for the isolation of fragments of the plasmalemma based on differential and density gradient centrifugation using cell free extracts from anaerobically grown Saccharomyces cerevisiae. Electron microscopically investigated frozen-etched specimens of isolated plasmalemma revealed the presence of globular particles attached to the outer surface of the membrane; these particles correspond to those observed in situ.In isolated plasmalemma a high specific activity of Mg++-dependent ATPase, which is not sensitive to Oligomycin, is present. Yeast plasmalemma contains protein, lipids (including phospholipids) and an appreciable amount of polysaccharide. Hydrolysis of this polysacharide yields only mannose.The treatment of the isolated plasmalemma with detergents liberates the globular particles which can be isolated by density gradient centrifugation. Protein and polysaccharide occur in the respective fraction; therefore the globular particle represents a mannan-protein. It is concluded that the particles, which cover the plasma-membrane of plant cells, represent glycoproteins, that is, building stones to be incorporated into the fibrillar network of the cell walls.  相似文献   

11.
In pancreatic lobules incubated in Ca2+-free Krebs-Ringer bicarbonate solution +0.5 mM EGTA tight junctions are first disarrayed and then break up into fasciae occludentes and small fibrillar fragments, which move laterally in the plane of the plasmalemma and often wind up around the gap junctions. The interruption of the continuity of tight junctions results in the disappearance of the difference in intramembranous particle density between the lateral and luminal regions of the plasmalemma. These results are consistent with the interpretation of tight junctions as dynamic structures, probably resulting from a specific polymerization of intramembranous particles and confirm that tight junctions might have a role in establishing and maintaining the regional differences of the plasmalemma.  相似文献   

12.
An electron cytochemical study of glycoproteins and glycolipids was made for the mature sarcocysts of Sarcocystis muris. Glycoprotein structures as branched fibrilles were seen on the surface of the sarcocyst wall. The fibrillar and granular glycoprotein structures were found in the ground substance of sarcocysts near the cyst wall and in the septae. In the plasmalemma of two types of cyst stages (merozoites and intermediate cells), glycoprotein fibrillar structures were revealed connecting these two cell types with each other. The third type cyst stages, i.e. the metrocytes, are situated separately without any fibrillar connections between them and other cyst stages being observed. This question is discussed in terms of the problem of cytodifferentiation. The fibrillar and granular glycoprotein material is scattered over the cytoplasm of the cyst stages, being especially concentrated in micronemes, rhoptries and around amylopectin granules. The control ultrathin sections were treated with saliva or pronase for the aims of protein identification in the material under study. In addition to glycoprotein, some glycolipids material was detected in the sarcocysts in the form of drops surrounded with thin glycoproteinaceous layers. Glycolipids were found in the ground substance of sarcocysts near the cyst stages and in the parasite cell cytoplasm around the micronemes and rhoptries. The data obtained are discussed in connection with the functional role glycoproteins and glycolipids play in S. muris.  相似文献   

13.
Cell structure, cell adhesion, and stalk formation have been examined by electron microscopy in the colonial flagellate, Cephalothamnium cyclopum. Each cell is obconical or spindle-shaped, pointed posteriorly and truncated anteriorly. The cell membrane is underlain by epiplasm 0.1 μm thick in the posterior region, but bands of microtubules support the anterior region which is differentiated into a flagellar pocket, oral apparatus and contractile vacuole. Each of 2 flagella, joined a short way above their bases by an interflagellar connective, has a paraxial rod and mastigonemes. One flagellum is free and is important in food gathering while the other is recurrent and lies in a shallow groove on the ventral cell surface but projects posteriorly into the stalk. The basal bodies of these flagella are bipartite structures connected by a pair of striated rootlets with accessory microtubular fibers. The oral apparatus consists of a funnel-shaped buccal cavity and cytostome. It is supported by helical and longitudinal microtubules and also has nearby striated and microtubular fibers. Possible roles of associated oral vesicles in relation to ingestion are discussed. A reticulate mitochondrion houses a massive kinetoplast which has a fibrillar substructure resembling that of dinoflagellate chromosomes. Adjacent flagellates adhere by laminate extensions of their posterior regions and attach by their recurrent flagella to a communally secreted stalk composed of finely fibrillar material. This study indicates that Cephalothamnium belongs in the order Kinetoplastida, and has many features in common with members of the family Bodonidae.  相似文献   

14.
B. A. Palevitz 《Protoplasma》1981,107(1-2):115-125
Summary Thick sections of fixed, embedded stomatal cells ofPhleum pratense were examined using high voltage electron microscopy and stereological procedures. The cortex of guard cells and subsidiary cells throughout differentiation contains numerous microtubules adjacent to the plasmalemma. Although microtubules are usually aligned in one net direction, individual microtubules may diverge from this orientation in various ways, producing anastomosing or crossed arrays. Also present in the cortex of both guard and subsidiary cells are collections of membranous elements and amorphous material upon which microtubules seem to focus, terminate or overlap. Such structures may constitute microtubule nucleation centers. The significance of these observations is discussed in terms of the control of microtubule development, wall microfibril deposition and cell morphogenesis.  相似文献   

15.
The spindle apparatus ofCoprinus micaceus begins to develop from the diglobular polar body outside the nucleus. During both meiotic divisions it operates inside the nuclear envelope and consists of two amorphous poles, a central bundle of interpolar microtubules, and chromosomal microtubules. A metaphase plate cannot exist because the interpolar strand of fibers is persistent throughout the division process. Within the spindle axis more than 100 microtubules can be estimated. They are encircled by a ring of chromatic structures. During the telophase the former spindle pole is evaginated from the nuclear envelope and contacts the plasmalemma near the cell wall.  相似文献   

16.
The participation of the sarcocyst surface apparatus (SSA) of two sarcosporidian species, Sarcocystis muris and S. ovifelis (Coccidia, Sporozoa, Apicomplexa), in degradation of disrupted host cell substances was investigated. After degradation, these substances are transported through the membrane of the SSA to the sarcocyst ground substance (GS), but this process cannot be regarded as endocytosis. At first, the transported substances were found in SSA pits in the form of fibrillar structures. Later on, these were seen as twisted up granules. In some cases, such granules restore their fibrillar shape, penetrate through the SSA membrane and appear in the sarcocyst GS. In other cases, the small granules may be released from SSA pits directly to the sarcocyst GS. Besides, two SSA primembrane layers were seen to disappear during the transportation of host cell substances. In addition, multimembrane structures (membranous whorls) were first demonstrated between the plasmalemma and inner membrane complex of the zoite pellicle. Multimembrane structures were found, in addition, in the zoite cytoplasm in connection with micronemes. These structures resembling chloroplast granae of thylakoids may presumably fill the gap in membrane pool of the SSA contributing to its renewal.  相似文献   

17.
C. G. Ogden 《Protoplasma》1991,163(2-3):136-144
Summary The siliceous body plates ofCorythion dubium are bound by a band of organic cement which is thickest at the lateral margins. The anterior vacuolar cytoplasm is separated by a pigment zone, which forms a dark band in the mid-body region, from the compact posterior region containing a typical vesicular nucleus surrounded by a region of dense endoplasmic reticulum. A pellicular basket of microtubules surrounds the posterior cytoplasm. The large Golgi complex lies between the nucleus and the fundus. Numerous coated and uncoated vesicles from the Golgi cisternae are seen in the peripheral cytoplasm alongside developing plates. These small siliceous plates are enclosed in silicon deposition vesicles lying in surface ruffles of the plasmalemma, often in association with a pair of microtubules. Observations are made on the formation of these vesicles and the early stages of silica deposition. A comparison is drawn between silica deposition inC. dubium and choanoflagellates where there is a similar association between silicon deposition vesicles and microtubules.  相似文献   

18.
Shield cells form the antheridium envelopes. At the first stage of spermatogenesis they grow intensively in the tangential direction, which is stopped during the period of spermatozoid differentiation. The increase in shield cell volumes is associated with the increase in DNA level in the nucleus up to 16-32 C. 3H thymidine incorporation occurs in about 30% of shields at younger developmental stages and lasts until the stage in which 16 celled antheridial filaments predominate. At first stage of spermatogenesis the intensity of 3H leucine incorporation increases as DNA amount in the nuclei increases, reaching the maximum value at the end of this period. During spermiogenesis it gradually decreases. Shield nuclei are characterized by low content of condensed chromatin, the presence of numerous nucleoli with nucleolonema-like structure as well as the occurrence of bands of intranuclear microtubules. It has been suggested that these microtubules are associated with cyclical changes in the shapes of nuclei. During DNA replication the nuclei have the form of flat discs which between successive endoreplication cycles become ring shaped. Peripheral zone of shield cells is compartmentalized through incomplete walls. They support the radial walls of shields increasing the contact surface of plasmalemma with a cell wall. During spermiogenesis the increase in plasmalemma surface results from the growth of shields in the radial direction. The shield cells contain plastids placed close to each other at the inner tangential wall. They are orange in colour and have fully formed system of grana and intergrana thylakoids, like the plastids of the thallus. The number and sizes of the plastoglobules increase as the anteridium develops. Dictiosomes are surrounded with numerous smooth and coated vesicles. Mitochondria exhibit poorly condensed structure. Microbodies adjoining the plastids are sporadically encountered. It has been assumed that changes in structural organization as well as growth character of shield cells constitute the factor regulating the exchange with external environment, determine light spectrum penetrating to the antheridium and the volume of antheridial space.  相似文献   

19.
The ciliary (kinetid) structures of the ciliate Strobilidium velox have been examined with scanning and transmission electron microscopes. Somatic kineties consist of a linear row of kinetosomes (monokinetids) and short cilia lying partially beneath a thin fold of cytoplasm. The only fibrillar kinetid structure extending from the kinetosomes is a transverse ribbon of microtubules. The paroral membrane is a single-file polykinetid possessing a possible transverse ribbon of microtubules and a nematodesma. The oral polykinetids or membranelles are complex, with microtubules extending from both anterior and posterior rows of cilia. While the kinetid structures do not satisfy the criteria for the order Choreotrichida, they are similar to the tintinnids in several other relevant ways. Strobilidium velox is proposed to be an unusual ciliate that is an exception to the concept that somatic kinetids are conservative and reliable phylogenetic indicator structures.  相似文献   

20.
Aspects of spore production in the red algaCeramium   总被引:1,自引:1,他引:0  
Summary Tetraspore development from the post-meiotic to the mature stage has been studied using light and electron microscopy and histochemistry. The structure of the mature carpospore is identical to that of the tetraspore suggesting a similar developmental sequence.The tetrasporangial wall consists of 3 main fibrillar layers, the origin of the inner of which appears to be the wall-plasmalemma interface. The development of furrows cleaving the protoplast into 4 results in the formation of new plasmalemma and subsequently new wall fibrils. The Golgi apparatus is important in the formation of two well-defined substances. The first is fibrillar and is secretedvia vacuole-like structures into the sporangial wall. After spore release, this functions as a protective mucilaginous layer. The second has a distinctive fine structural morphology and probably functions as an adhesive.Observations on spore releasein vivo reveals a similar process for both types of spore. Each spore is surrounded by mucilage which may assist in initial attachment prior to the secretion of the adhesive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号