首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A rapid, simple, and reliable method has been developed for the characterization and quantitation of ceramide molecular species directly from chloroform extracts of biological samples by electrospray ionization tandem mass spectrometry (ESI/MS/MS). By exploiting the differential fragmentation patterns of deprotonated ceramide ions, individual 2-hydroxy and nonhydroxy ceramide molecular species were readily identified by ESI/MS/MS with the neutral loss of fragments of mass 256.2 and 327.3 which correspond to sphingosine derivatives. The ions generated from the neutral loss of 256.2 (i.e., [M - H - 256.2](-)) are unique for ceramides with N-acyl sphingosine with the 18-carbon homolog. However, the sensitivity for nonhydroxy ceramides in ESI/MS/MS with the neutral loss of 256.2 is approximately threefold higher than that for 2-hydroxy ceramides. The ions resulting from the neutral loss of 327.3 (i.e., [M - H - 327.3](-)) are specific for 2-hydroxy ceramides. Additionally, all ceramides including both 2-hydroxy and nonhydroxy forms can be confirmed and accurately quantitated by ESI/MS/MS with the neutral loss of 240.2 after correction for (13)C isotope factors. This methodology demonstrated a 1000-fold linear dynamic range and a detection limit at the subfemtomole range and was applied to directly quantitate ceramide molecular species in chloroform extracts of biological samples including brain tissues and cell cultures.  相似文献   

2.
Cardiolipin is a prominent component of the mitochondrial inner membranes contributing to the regulation of multiple discrete mitochondrial functions. Here, we extend shotgun lipidomics to identify and quantitate cardiolipin molecular species directly from lipid extracts of biological samples. Three shotgun lipidomics approaches for analyses of cardiolipin molecular species were developed using either a continuous ion-transmission instrument (i.e., triple-quadrupole type) with either low or high mass resolution settings or a high mass resolution hybrid pulsed instrument [i.e., quadrupole time-of-flight (QqTOF) type]. Three chemical principles were used for the development of these approaches. These include the marked enrichment of linoleate in cardiolipin to maximize the signal-to-noise ratio, the specific neutral loss of ketenes from doubly charged cardiolipin molecular ions to yield doubly charged triacyl monolysocardiolipins, and the doubly charged character of two phosphates in each cardiolipin molecular species. Through these techniques, we identified and quantified the specific molecular species profiles of cardiolipin directly from lipid extracts of mouse heart, liver, and skeletal muscle. The accuracy ( approximately 5%) and the low end of the linear dynamic range (10 fmol/microl) for quantitation make these approaches useful for studying alterations in cardiolipin metabolism in multiple disease states using either type of mass spectrometer.  相似文献   

3.
4.
A rapid and sensitive electrospray ionization (ESI) tandem mass spectrometry (MS–MS) procedure was developed for the determination of iodide (I). A gold (Au) and I complex was formed immediately after the addition of the chelating agent NaAuCl4 to I solution, and was extracted with methyl isobutyl ketone. One to five microliters of the extract were injected directly into an ESI–MS–MS instrument. I quantification was performed by selecting reaction monitoring of the product ion I at m/z 127 derived from the precursor ion 197AuI2 at m/z 451. I concentration was measured in the quantification range from 10−7 to 10−5 M using 50 μL of solution within 10 min. Iodate was reduced to I with ascorbic acid and determined. I concentration in reference urine 2670a was measured after treatments.  相似文献   

5.
Ceruloplasmin has ferroxidase activity and plays an essential role in iron metabolism. In this study, a site-specific glycosylation analysis of human ceruloplasmin (CP) was carried out using reversed-phase high-performance liquid chromatography with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). A tryptic digest of carboxymethylated CP was subjected to LC-ESI-MS/MS. Product ion spectra acquired data-dependently were used for both distinction of the glycopeptides from the peptides using the carbohydrate B-ions, such as m/z 204 (HexNAc) and m/z 366 (HexHexNAc), and identification of the peptide moiety of the glycopeptide based on the presence of the b- and y-series ions derived from the peptide. Oligosaccharide composition was deduced from the molecular weight calculated from the observed mass of the glycopeptide and theoretical mass of the peptide. Of the seven potential N-glycosylation sites, four (Asn119, Asn339, Asn378, and Asn743) were occupied by a sialylated biantennary or triantennary oligosaccharide with fucose residues (0, 1, or 2). A small amount of sialylated tetraantennary oligosaccharide was detected. Exoglycosidase digestion suggested that fucose residues were linked to reducing end GlcNAc in biantennary oligosaccharides and to reducing end and/or alpha1-3 to outer arms GlcNAc in triantennary oligosaccharides and that roughly one of the antennas in triantennary oligosaccharides was alpha2-3 sialylated and occasionally alpha1-3 fucosylated at GlcNAc.  相似文献   

6.
To explore the hypothesis that alterations in ethanolamine plasmalogen may be directly related to the severity of dementia in Alzheimer's disease (AD), we performed a systematic examination of plasmalogen content in cellular membranes of gray and white matter from different regions of human subjects with a spectrum of AD clinical dementia ratings (CDR) using electrospray ionization mass spectrometry (ESI/MS). The results demonstrate: (1) a dramatic decrease in plasmalogen content (up to 40 mol% of total plasmalogen) in white matter at a very early stage of AD (i.e. CDR 0.5); (2) a correlation of the deficiency in gray matter plasmalogen content with the AD CDR (i.e. approximately 10 mol% of deficiency at CDR 0.5 (very mild dementia) to approximately 30 mol% of deficiency at CDR 3 (severe dementia); (3) an absence of alterations of plasmalogen content and molecular species in cerebellar gray matter at any CDR despite dramatic alterations of plasmalogen content in cerebellar white matter. Alterations of ethanolamine plasmalogen content in two mouse models of AD, APP(V717F) and APPsw, were also examined by ESI/MS. A plasmalogen deficiency was present (up to 10 mol% of total plasmalogen at the age of 18 months) in cerebral cortices, but was absent in cerebella from both animal models. These results suggest plasmalogen deficiency may play an important role in the AD pathogenesis, particularly in the white matter, and suggest that altered plasmalogen content may contribute to neurodegeneration, synapse loss and synaptic dysfunction in AD.  相似文献   

7.
8.
Twelve naturally occurring glucosinolates displaying alkenyl, hydroxylated, methylsulphinyl, aromatic and indole side chains were investigated by both negative and positive ion electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). In order to resolve the MS/MS spectra obtained from the anion and cation molecular ions of glucosinolates, the different fragments were investigated by MSn experiments using an ion trap spectrometer. The MS3 spectra obtained permitted possible fragmentation schemes to be proposed. These were supported by accurate mass measurements of some characteristic diagnostic ions with the help of a quadrupole time-of-flight instrument. The negative ion ESI-MS/MS behaviour of the different glucosinolates investigated in this study confirmed previously described patterns and revealed new interesting structural informative fragments. Some are common to all the glucosinolates and others are highly specific for a type of variable side chain. The positive ion ESI-MS/MS fragments obtained from the [MNa+Na]+ or [MK+K]+ molecular ions did not provide complementary specific diagnostic ions. Nevertheless, when compared with the negative ion mode, the daughter ions appeared more homogenous and with a better relative abundance for all of the 12 compounds studied. Moreover, the positive ion mode appeared to be more efficient than the negative mode for the study of methoxylated glucosinolates and should be useful to detect the glucosinolates present as organic salts in crude plant extracts.  相似文献   

9.
D-erythro-Sphingosine is known to be phosphorylated by sphingosine kinase to yield sphingosine-1-phosphate. With the importance of sphingosine-1-phosphate in biological functions being made evident by recent research, a selective and convenient method of assay to measure sphingosine kinase activity is required. Here we developed a new sphingosine kinase assay using murine teratocarcinoma mutant F9-12 cells and electrospray ionization tandem mass spectrometry (ESI–MS/MS) with direct infusion. Sphingosine-1-phosphate in the crude extract of enzyme reaction mixture was selectively characterized and quantitated using precursor ion scanning for [PO3]- in the negative electrospray ionization mode. The method was successfully validated for an activator and an inhibitor of sphingosine kinase. Direct quantitation of S1P without the use of radioactive reagents, chemical derivatization, and extensive chromatographic separation enables simplified assay for sphingosine kinase activity at the cellular system level, and the use of a structural analog as an internal standard provides robustness to the assay.  相似文献   

10.
Cationic peanut peroxidase (CP) was isolated from peanut (Arachis hypogaea) cell suspension culture medium. CP is a glycoprotein with three N-linked glycan sites at Asn60, Asn144, and Asn185. ESI-MS of the intact purified protein reveals the microheterogeneity of the glycans. Tryptic digestion of CP gave a near complete sequence coverage by ESI-MS. The glycopeptides from the tryptic digestion were separated by RP HPLC identified by ESI-MS and the structure of the glycan chains determined by ESI-MS/MS. The glycans are large structures of up to 16 sugars, but most of their non-reducing ends have been modified giving a mixture of shorter chains at each site. Good agreement was found with the one glycan previously analyzed by (1)H NMR. This work is the basis for the future studies on the role of the glycans on stability and folding of CP and is another example of a detailed structural characterization of complex glycoproteins by mass spectrometry.  相似文献   

11.
Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin‐like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants.  相似文献   

12.
Electrospray ionization mass spectrometry (ESI-MS) has proven to be a useful tool for examining noncovalent complexes between proteins and a variety of ligands. It has also been used to distinguish between denatured and refolded forms of proteins. Surfactants are frequently employed to enhance solubilization or to modify the tertiary or quaternary structure of proteins, but are usually considered incompatible with mass spectrometry. A broad range of ionic, nonionic, and zwitterionic surfactants was examined to characterize their effects on ESI-MS and on protein structure under ESI-MS conditions. Solution conditions studied include 4% acetic acid/50% acetonitrile/46% H2O and 100% aqueous. Of the surfactants examined, the nonionic saccharides, such as n-dodecyl-beta-D-glucopyranoside, at 0.1% to 0.01% (w/v) concentrations, performed best, with limited interference from chemical background and adduct formation. Under the experimental conditions used, ESI-MS performance in the presence of surfactants was found to be unrelated to critical micelle concentration. It is demonstrated that surfactants can affect both the tertiary and quaternary structures of proteins under conditions used for ESI-MS. However, several of the surfactants caused significant shifts in the charge-state distributions, which appeared to be independent of conformational effects. These observations suggest that surfactants, used in conjunction with ESI-MS, can be useful for protein structure studies, if care is used in the interpretation of the results.  相似文献   

13.
Mass spectrometry offers a potential means of measuring virtually all enzyme-catalyzed reactions by simultaneously measuring the concentrations of substrates, products, and intermediates where there are differences in mass between them. To perform these measurements the reaction mixture must be aged for different times and then ionized. Electrospray ionization mass spectrometry provides the most direct means of measuring these reactions. Here we describe a simple reaction mixing and ageing attachment for an electrospray ionization mass spectrometer, built from commercially available components. We have employed this device to measure the kinetics of a model reaction, namely the hydrolysis of N2-(carbobenzyloxy)-L-lysine-p-nitrophenyl ester-catalyzed by trypsin. In this way we were able to measure the kinetics of substrate depletion, product formation, and changes in both free enzyme and acyl-enzyme intermediate concentration in the approach to steady state. With this device we were able to measure reaction times down to about 640 ms.  相似文献   

14.
Two important glycosaminoglycans (GAGs) with structural roles in the body's cartilage are hyaluronan (HA) and chondroitin sulfate (CS). A simple mass spectrometric method for determining the amount of HA that may be present in isolated CS samples is presented in this article. Samples are subjected to selective enzymatic digestion using a bacterial hyaluronidase (HA lyase, EC 4.2.2, from Streptococcus dysgalactiae) specific for HA. Undigested CS GAG is then removed by centrifugal filtration, and digested HA left in the filtrate is quantified by electrospray ionization mass spectrometry using an internal standard and selected ion monitoring. The described method was applied to the analysis of several CS samples prepared for use in nutritional supplements.  相似文献   

15.
Neutral oligosaccharides were fluorescently conjugated with 7-amino-1, 3-naphthalenedisulfonic acid. A mixture of fluorescently labeled chitobiose, chitotriose, and chitotetrose were successfully separated by preparative capillary electrophoresis (CE) and the individual components characterized by electrospray ionization-mass spectrometry (ESI-MS). By combining fluorescent labeling with CE, the use of highly specific exoglycosidases and ESI-MS, a more structurally complex N-linked glycan was analyzed.  相似文献   

16.
17.
Large-scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI-MS) is a highly sensitive label-free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI-MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI-MS detection of biomolecules in high-salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal-to-noise ratio. As a result, sensitivity for low-concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing.  相似文献   

18.
Mass spectrometry (MS) with electrospray ionization (ESI) has shown utility for studying noncovalent protein complexes, as it offers advantages in sensitivity, speed, and mass accuracy. The stoichiometry of the binding partners can be easily deduced from the molecular weight measurement. In many examples of protein complexes, the gas phase-based measurement is consistent with the expected solution phase binding characteristics. This quality suggests the utility of ESI-MS for investigating solution phase molecular interactions. Complexes composed of proteins from the human immunodeficiency virus (HIV) have been studied using ESI-MS. Multiply charged protein dimers from HIV integrase catalytic core (F185K) and HIV protease have been observed. Furthermore, the ternary complex between HIV protease dimer and inhibitor pepstatin A was studied as a function of solution pH. Zinc binding to zinc finger-containing nucleocapsid protein (NCp7) and the NCp7-psi RNA 1:1 stoichiometry complex was also studied by ESI-MS. No protein-RNA complex was observed in the absence of zinc, consistent with the role of the zinc finger motifs for RNA binding. Proteins Suppl. 2:28–37, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
AIMS: To rapidly type the fengycin homologues produced by Bacillus subtilis strains with electrospray ionization/collision-induced dissociation (ESI/CID) mass spectrometry. METHODS AND RESULTS: Fengycin homologues produced by Bacillus subtilis JA were analysed. When each homologue was subjected to ESI/CID analysis, ions representing characteristic fragmentations were detected. These ions can help to identify the homologues; even homologues of the same nominal mass can be discriminated by their ESI/CID spectra. Based on the CID results, fengycin homologues can be correctly assigned. CONCLUSIONS AND SIGNIFICANCE OF THIS STUDY: ESI/CID leads to rapid detection and structural characterization of fengycin homologues or lipopeptides with similar properties. It will be very useful in studying the regulatory expression of these peptides.  相似文献   

20.
We have adopted nanoflow electrospray ionization mass spectrometry (ESI-MS) and isothermal titration calorimetry (ITC) to probe the mechanism of peptide recognition by the SH2 domain from the Src family tyrosine kinase protein, Fyn. This domain is involved in the mediation of intracellular signal transduction pathways by interaction with proteins containing phosphorylated tyrosine (Y*) residues. The binding of tyrosyl phosphopeptides can mimic these interactions. Specificity in these interactions has been attributed to the interaction of the Y* and residues proximal and C-terminal to it. Previous studies have established that for specific binding with Fyn, the recognition sequence consists of pTyr-Glu-Glu-Ile. The specific interactions involve the binding of Y* with the ionic, and the Y* + 3 Ile residue with the hydrophobic binding pockets on the surface of the Fyn SH2 domain. In this work, a variation in the Y* + 3 residue of this high-affinity sequence was observed to result in changes in the relative binding affinities as determined in solution (ITC) and in the gas phase (nanoflow ESI-MS). X-ray analysis shows that a feature of the Src family SH2 domains is the involvement of water molecules in the peptide binding site. Under the nanoflow ESI conditions, water molecules appear to be maintained in the Fyn SH2-ligand complex. Compelling evidence for these molecules being incorporated in the SH2-peptide interface is provided by the prevalence of the peaks assigned to water-bound over the water-free complex at high-energy conditions. Thus, the stability of water protein-ligand complex appears to be intimately linked to the presence of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号