首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes activation of pine cone with Fenton reagent and determines the removal of Cd(II) and Pb(II) ions from aqueous solution. Changes of the surface properties of adsorbent materials were determined by the FT-IR and SEM analysis after activation of pine cone. The effect of Fe(2+)/H(2)O(2) ratio, ORP, pH and contact time were determined. Different adsorption isotherms were also obtained using concentrations of heavy metal ions ranging from 0.1 to 150mgL(-1). The adsorption process follows pseudo-first-order reaction kinetics and follows the Langmuir adsorption isotherm. The study discusses thermodynamic parameters, including changes in Gibbs free energy, entropy, and enthalpy, for the adsorption of Cd(II) and Pb(II) on activated cone, and revealed that the adsorption process was spontaneous and exothermic under natural conditions. The maximum removal efficiencies were obtained as 91% and 89% at pH 7 with 90 and 105-min contact time for Cd(II) and Pb(II), respectively.  相似文献   

2.
In this study Beauveria bassiana and Metarhizium anisopliae were used as inexpensive and efficient biosorbents for Pb(II) and Cd(II) from aqueous metal solutions. The effects of various physicochemical factors on Pb(II) and Cd(II) biosorption by B. bassiana and M. anisopliae were studied. The optimum pH for Cd(II) and Pb(II) biosorption by two fungal species was achieved at pH 6.0 for Pb(II) and 5.0 Cd(II) at a constant time of 30 min. The nature of fungal biomass and metal ion interactions was evaluated by Fourier transform infrared. The maximum adsorption capacities (q(max)) calculated from Langmuir isotherms for Pb(II), and Cd(II) uptake by B. bassiana were 83.33±0.85, and 46.27±0.12 mg/g, respectively. However, the q(max) obtained for Pb(II) uptake by M. anisopliae was 66.66±0.28 mg/g, and 44.22±0.13 mg/g for Cd(II). B. bassiana showed higher adsorption capacity compared to M. anisopliae. The data obtained imply the potential role of B. bassiana and M. anisopliae for heavy metal removal from aqueous solutions.  相似文献   

3.
Apricot stones were carbonised and activated after treatment with sulphuric acid (1:1) at 200 degrees C for 24 h. The ability of the activated carbon to remove Ni(II), Co(II), Cd(II), Cu(II), Pb(II), Cr(III) and Cr(VI) ions from aqueous solutions by adsorption was investigated. Batch adsorption experiments were conducted to observe the effect of pH (1-6) on the activated carbon. The adsorptions of these metals were found to be dependent on solution pH. Highest adsorption occurred at 1-2 for Cr(VI) and 3-6 for the rest of the metal ions, respectively. Adsorption capacities for the metal ions were obtained in the descending order of Cr(VI) > Cd(II) > Co(II) > Cr(III) > Ni(II) > Cu(II) > Pb(II) for the activated carbon prepared from apricot stone (ASAC).  相似文献   

4.
This study was conducted in order to understand the mechanism of Cd and Pb adsorption in aqueous solutions by raw and modified saw dust (SD) of Alstonia macrophylla. The biosorbent was characterized by Boehm titration, specific surface area, scanning electron microscopy (SEM), X-ray energy dispersion (EDAX), and Fourier transform infrared (FTIR) analyses. SD was treated using organic acids and bases. Batch studies were conducted for raw and modified SD to determine the effect of initial concentration, pH, ionic strength, and contact time on metal adsorption. The specific surface area and total basic and acidic groups of SD were 77 m2/g and 1521 and 2312 μmol/g, respectively. The adsorption of both metals onto SD was pH dependent. No ionic strength dependency was observed in adsorption of Cd and Pb at pH >6, indicating inner sphere surface complexation. Monolayer adsorption is dominant in both metal sorptions by SD. Furthermore, there is no competition between metals on adsorption and raw SD was found to be suitable for removal of Cd and Pb as compared to organic acid– or base-treated SD. Maximum adsorption capacity of SD for Cd and Pb were 30.6 and 204.2 mg/g, respectively. Results indicate that the A. macrophylla SD can be considered as a potential material for metal ion removal from wastewater.  相似文献   

5.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

6.
Sorption affinity of copper flotation waste from KGHM toward Cd(II), Cr(III), Cu(II), and Pb(II) ions was investigated in this work. Batch sorption studies, using single-element synthetic aqueous solutions at various pH (2–12), contact time (10–300 min), initial concentration (100–5000 mg dm?3; 1–100 mg dm?3 for Cd(II)) and adsorbent dose (25–200 g dm?3), were performed. Bonding strength of adsorbed metals was tested from the degree of desorption. The maximum metal removal was observed at pH 5–8, ≥120 min reaction time, and 25 g dm?3 adsorbent dose. Maximum sorption capacities of studied material were 41.6, 58.8, and 83.8 mg g?1 for Cr(III), Cu(II), and Pb(II), respectively, for 5000 mg dm?3 initial concentration, and 0.86 mg g?1 for Cd(II) for initial concentration of 50 mg dm?3. Sorption isotherms were very well fitted to Langmuir (Cd, Cr, Pb) and Freundlich (Cu) models. Sorption kinetics was nearly ideally fitted to pseudo-second-order kinetic model. Desorption studies showed that most of Cr(III) (98.5%) and Pb(II) (67.3%) ions remained bound to the surface, indicating that the chemisorption dominated as a controlling process. On the other hand, mostly desorbed were Cd(II) (98.5%) and Cu(II) (90.3%) ions, which indicated that processes like physisorption or precipitation were prevailing.  相似文献   

7.
The adsorption of Cd2+ and Pb2+ on sugar beet pulp (SBP), a low-cost material, has been studied. In the present work, the abilities of native (SBP) to remove cadmium (Cd2+) and lead (Pb2+) ions from aqueous solutions were compared. The (SBP) an industrial by product and solid waste of sugar industry were used for the removal of Cd2+ and Pb2+ ions from aqueous water. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, adsorbent dose, initial metal ion concentration, and time on uptake. The sorption process was relatively fast and equilibrium was reached after about 70 min of contact. As much as 70-75% removal of Cd2+ and Pb2+ ions for (SBP) are possible in about 70 min, respectively, under the batch test conditions. Uptake of Cd2+ and Pb2+ ions on (SBP) showed a pH-dependent profile. The overall uptake for the (SBP) is at a maximum at pH 5.3 and gives up to 46.1 mg g(-1) for Cd2+ and at pH 5.0 and gives 43.5 mg g(-1) for Pb2+ for (SBP), which seems to be removed exclusively by ion exchange, physical sorption and chelation. A dose of 8 gL(-1) was sufficient for the optimum removal of both the metal ions. The Freundlich represented the sorption data for (SBP). In the presence of 0.1M NaNO3 the level of metal ion uptake was found to reach its maximum value very rapidly with the speed increasing both with the (SPB) concentration and with increasing initial pH of the suspension. The reversibility of the process was investigated. The desorption of Cd2+ and Pb2+ ions which were previously deposited on the (SBP) back into the deionised water was observed only in acidic pH values during one day study period and was generally rather low. The extent of adsorption for both metals increased along with an increase of the (SBP) dosage. (SBP), which is cheap and highly selective, therefore seems to be a promising substrate to entrap heavy metals in aqueous solutions.  相似文献   

8.
Multiple microorganisms directly or treated with NaOH were immobilized by using Ca-alginate embedding to form biosorbents I and II, successively. The biosorption behaviors of biosorbents I and II for Pb(II) from aqueous solution were investigated in a batch system. Effects of solution pH, initial metal concentration, biosorbent dosage, contact time, temperature, and ionic strength on the adsorption process were considered to study the biosorption equilibrium, kinetics, thermodynamics, and mechanism of Pb(II) ion adsorption on the 2 types of biosorbents. The results showed that the adsorption capacity of biosorbent II for Pb(II) was higher than that of biosorbent I, and biosorbent II had a faster adsorption rate for Pb(II) ions. According to FTIR spectra, the carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the biosorption of Pb(II). EDX analysis showed that ion exchange may be involved in the biosorption process, and the morphology observed by SEM micrograph of biosorbent I was completely different from that of biosorbent II. Desorption and regeneration experiments showed that the 2 types of biosorbents could be reused for 3 biosorption-desorption cycles without significant loss of their initial biosorption capacities.  相似文献   

9.
An efficient and cost effective non-conventional adsorbent has been prepared from seaweed Laminaria japonica by crosslinking with epichlorohydrin. Its adsorption behavior for trivalent and divalent metal ions was studied and it was found to exhibit excellent selectivity towards several metal ions. As a typical example, binary mixture of Pb(II) and Zn(II) was studied by using a packed column, indicating that the Pb(II) ion can be easily separated from its mixture with a concentration factor of 74 times. The maximum adsorption capacity for Pb(II), Cd(II), Fe(III) was found to be 1.35, 1.1, 1.53 mol kg(-1), respectively, while 0.8 7 mol kg(-1) for both La(III) and Ce(III) from the single metal ion solution according to the adsorption isotherm. The obtained values are comparable to the commercially available synthetic chelating resins.  相似文献   

10.
In this study, chitosan (CTS) was crosslinked with both epichlorohydrin (ECH) and triphosphate (TPP), by covalent and ionic crosslinking reactions, respectively. The resulting adsorbent (CTS-ECH-TPP) was characterized by SEM, CHN, EDS, FT-IR and TGA analyses, and tested for metal adsorption. The adsorbent was used in batch experiments to evaluate the adsorption of Cu(II) and Cd(II) ions in single and binary metal solutions. In single metal solutions the maximum adsorption capacities for Cu(II) and Cd(II) ions, obtained by Langmuir model, were 130.72 and 83.75 mg g?1, respectively. Adsorption isotherms for binary solutions showed that the presence of Cu(II) decreased Cd(II) adsorption due to a significant competition effect, that is, the adsorbent was selective towards Cu(II) rather than Cd(II).  相似文献   

11.
The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl2 demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g−1 for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich–Peterson models. The regression coefficient for both Langmuir and Redlich–Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that Lvariegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Adsorption of heavy metals onto sewage sludge-derived materials   总被引:10,自引:1,他引:9  
Two materials were produced from sewage sludge by: (1) pyrolysis of dried sewage sludge (PS); (2) chemical activation of dried sewage sludge with ZnCl(2) followed by pyrolysis (AS). The aim was to study the application of these materials for metal purification from water and to determine the efficiency of each material. Although AS displayed higher capacity, both PS and AS were able to adsorb these metals and the preferential order was equal: Hg(II)>Pb(II)>Cu(II)>Cr(III). For each metal-adsorbent pair, metal adsorption was highly pH dependent. In all cases the equilibrium was well described both by the Langmuir and the Freundlich isotherms. At the corresponding optimum pH, AS showed the following adsorption capacities: 175.4, 64.1, 30.7 and 15.4 mg/g of Hg(II), Pb(II), Cu(II) and Cr(III), respectively. These results indicate the potential application of these sewage sludge based adsorbents for the treatment of metal polluted effluents.  相似文献   

13.
The biosorption of cadmium and lead ions from artificial aqueous solutions using waste baker's yeast biomass was investigated. The yeast cells were treated with caustic, ethanol and heat for increasing their biosorption capacity and the highest metal uptake values (15.63 and 17.49 mg g(-1) for Cd(2+) and Pb(2+), respectively) were obtained by ethanol treated yeast cells. The effect of initial metal concentration and pH on biosorption by ethanol treated yeast was studied. The Langmuir model and Freundlich equation were applied to the experimental data and the Langmuir model was found to be in better correlation with the experimental data. The maximum metal uptake values (qmax, mg g(-1)) were found as 31.75 and 60.24 for Cd(2+) and Pb(2+), respectively. Competitive biosorption experiments were performed with Cd(2+) and Pb(2+) together with Cu(2+) and the competitive biosorption capacities of the yeast biomass for all metal ions were found to be lower than in non-competitive conditions.  相似文献   

14.
Biosorption of chromium, copper, and nickel from aqueous solution by Tamarindus indica fruit nut testa (TFNT) in its pristine and acid-treated forms was studied under equilibrium and column-flow conditions. TFNT, a tannin-containing material, was characterized by energy dispersion x-ray fluorescence (EDXRF) and Fourier transform infrared (FTIR) spectral techniques and surface analysis. The effect of experimental variable parameters such as pH, concentration of metal ions, amount of adsorbent, and contact time on adsorption was investigated. Batch isothermal equilibrium data were analyzed on the basis of Langmuir and Freundlich adsorption isotherms. The kinetics of the adsorption process were studied in terms of Lagergren first-order kinetic model. The monolayer adsorption capacities of pristine and acid-treated forms of tamarind seed coat were found to be 44.8 and 77.5 mg/g for Cr(VI), 55.8 and 99.0 mg/g for Ni(II), and 84.7 and 85.4 mg/g for Cu(II) ions, respectively. The column-flow adsorption data were used to obtain breakthrough curves. The biosorbent loaded with the metal ions was regenerated using 1.0 M HCl and the regenerated bed was used for subsequent adsorption-desorption cycle.  相似文献   

15.
Oscillatoria sp. H1 (Cyanobacteria, microalgae) isolated from Mogan Lake was used for the removal of cadmium ions from aqueous solutions as its dry biomass, alive and heat-inactivated immobilized form on Ca-alginate. Particularly, the effect of physicochemical parameters like pH, initial concentration and contact time were investigated. The sorption of Cd(II) ions on the sorbent used was examined for the cadmium concentrations within the range of 25-250 mg/L. The biosorption of Cd(II) increased as the initial concentration of Cd(II) ions increased in the medium up to 100 mg/L. Maximum biosorption capacities for plain alginate beads, dry biomass, immobilized live Oscillatoria sp. H1 and immobilized heat-inactivated Oscillatoria sp. H1 were 21.2, 30.1, 32.2 and 27.5 mg/g, respectively. Biosorption equilibrium was established in about 1 h for the biosorption processes. The biosorption was well described by Langmuir and Freundlich adsorption isotherms. Maximum adsorption was observed at pH 6.0. The alginate-algae beads could be regenerated using 50 mL of 0.1 mol/L HCl solution with about 85% recovery.  相似文献   

16.
The generation of layer-by-layer silicate-chitosan composite biosorbent was studied. The films were evaluated on its stability regarding the polymer leakage and its capability in the removal of Cd(II), Cr(III) and Cr(VI) from an aqueous solution. SEM, EDAX and ATR-IR techniques were applied for material characterization. Silicate-chitosan films with a final layer of silicate demonstrated chitosan retention and had better sorption capacities than those without it. For metal species, such as Cd(II) and Cr(III), the greatest adsorption was obtained when the pH of the solution was 7. When Cr(VI) was evaluated, pH 4 was the optimal for its adsorption. Langmuir and Freundlich isotherms were modeled for the equilibrium data. An 80% of the adsorbed metal was recovered by HNO(3) incubation. This non-covalent immobilization method allowed chitosan surface retention and did not affect its adsorption properties. The use of a coated surface would facilitate sorbent removal from medium after adsorption.  相似文献   

17.
In this investigation, we report on the biosorption of Pb (II) from aqueous solutions by the nonliving biomass of the micro-alga (cyanobacterium) Spirulina platensis. Propagation of the micro-alga was carried out in outside oblong raceway ponds. The biomass was cleaned, dried and used for the investigation. The effects of pH, adsorbent dose, temperature, initial concentration of Pb (II), and contact time on the adsorption of lead by the dry biomass were studied. The experiments were carried out in 250 ml conical flasks containing 100 ml of test solutions using an orbital incubator at 150 rpm. Concentrations of the metal before and after the experiments were measured using Atomic Absorption Spectrophotometer. Very high levels of Pb (II) removal (>91%) were obtained. The optimum conditions for maximal adsorption by S. platensis were found to be pH 3; 2 g of adsorbent dose; incubation at 26°C; 100 mg/l of lead initial concentration and 60 minutes of contact time. The experimental data fitted well with Freundlich isotherm equation with R2 values greater than 0.97. Based on our results, we recommend the utilization of S. platensis biomass for heavy metal removal from aqueous solutions.  相似文献   

18.
Activated carbon (AC) prepared from waste Parthenium was used to eliminate Ni(lI) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out, by varying contact time, metal ion concentration, carbon concentration, pH and desorption to assess kinetic and equilibrium parameters. They allowed initial adsorption coefficient, adsorption rate constant and maximum adsorption capacities to be computed. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 54.35 mg Ni(II)/g of AC at initial pH of 5.0 and 20 degrees C, for the particle size 250-500 microm. Increase in pH from 2 to 10 increased percent removal of metal ion. The regeneration by HCl of Ni(II)-saturated carbon by HCl, allowed suggestion of an adsorption mechanism by ion-exchange between metal ion and H+ ions on the AC surfaces. Quantitative recovery of Ni(II) was possible with HCl.  相似文献   

19.
In situ immobilization constitutes a promising technology for the mitigation of contaminants, through the reduction of metal bioavailability and mobility. This study investigated the adsorption isotherms and kinetic characteristics of humin extracted from peat soils. We also studied the influences of the pH, ionic strengths, and soluble organic matter concentrations of soil solutions on the adsorptive properties of humin, and compared its ability to detoxify potentially toxic metals in both actual and simulated soil solutions. The study results indicated that humin contains a massive population of oxygen-containing functional groups. Its adsorption capacity for Pb(II) was greater than that for Cu(II), which exceeded that for Cd(II). The adsorption of humin for Pb(II) conformed to the Freundlich model, while the adsorption of humin for Cd(II) and Cu(II) followed the Langmuir model. The adsorption kinetics of humin with respect to potentially toxic metals aligned well with second-order kinetics equations. As the pH was elevated, the potentially toxic metal adsorption by humin increased rapidly. Electrolyte ions and tartaric acids in solution both inhibited the adsorption of potentially toxic metals by humin, and its ability to inactivate potentially toxic metals. This was shown to be improved in actual field soil solutions in contrast to simulated soil solutions.  相似文献   

20.
Biosorptive capacity of Pb(II), Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri was investigated based on Langmuir and Freundlich isotherms. Biosorptive capacity for Pb(II), Cd(II) and Cu(II) decreased with an increase of metal concentration, reaching 142, 43.5 and 36.2 mg/g at initial concentration of 300 mg/l, respectively. Biosorption capacity for metal ions increased with increasing pH. The optimum pH for biosorption rate of Cd(II) and Cu(II) were 5.0, and 6.0 for Pb(II) biosorption. The experimental data showed a better fit with the Langmuir model over the Freundlich model for metal ions throughout the range of initial concentrations. The maximum sorptive capacity (q max) obtained from the Langmuir equation for Pb(II), Cd(II) and Cu(II) were 153.3 (r 2  = 0.998), 43.86 (r 2  = 0.995), and 33.16 (r 2  = 0.997) for metal ions, respectively. The selectivity order for metal ions towards the biomass of P. stutzeri was Pb(II) > Cd(II) > Cu(II) for a given initial metal ions concentration. The interactions between heavy metals and functional groups on the cell wall surface of bacterial biomass were confirmed by FTIR analysis. The results of this study indicate the possible removal of heavy metals from the environment by using lyophilized cells of P. stutzeri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号