首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pol III, a subassembly of Escherichia coli DNA polymerase III holoenzyme lacking only the auxiliary beta subunit, was purified to homogeneity by an improved procedure. This assembly consists of nine different polypeptides, likely in a 1:1 stoichiometry: a catalytic core (pol III) of alpha (132 kDa), epsilon (27 kDa), and theta (10 kDa), and six auxiliary subunits: tau (71 kDa), gamma (52 kDa), delta (35 kDa), delta' (33 kDa), chi (15 kDa), and psi (12 kDa). The assembly behaves on gel filtration as a particle of about 800 kDa, indicating a content of two each of the subunits. A new procedure for purifying the core yielded a novel dimeric form which may provide the foundation for the dimeric nature of the more complex pol III and holoenzyme forms. Pol III readily dissociates into several subassemblies including pol III', likely a dimeric core with two tau subunits. The holoenzyme, purified by a similar procedure with ATP and Mg2+ present throughout, retained the beta subunit (37 kDa) as well as all the subunits present in pol III; the mass of the holoenzyme was estimated to be 900 kDa. The isolated initiation complex of holoenzyme with a primed template DNA and the elongation complex (formed in the presence of three deoxynucleoside triphosphates) had the same composition and stoichiometry as observed for pol III with two beta dimers in addition. An initiation complex assembled from a mixture of monomeric pol III core, gamma 2 delta delta' chi psi complex (gamma complex), beta, and tau retained the core, one beta dimer, and two tau subunits but was deficient in the gamma complex. When tau was omitted from the assembly mixture, the initiation complex contained one or two gamma complexes instead of the tau subunit. Based on these data, pol III holoenzyme is judged to be an asymmetric dimeric particle with twin pol III core active sites and two different sets of auxiliary units designed to achieve essentially concurrent replication of both leading and lagging strand templates.  相似文献   

3.
Hashimoto K  Shimizu K  Nakashima N  Sugino A 《Biochemistry》2003,42(48):14207-14213
DNA polymerases delta and epsilon (pol delta and epsilon) are the two major replicative polymerases in the budding yeast Saccharomyces cerevisiae. The fidelity of pol delta is influenced by its 3'-5' proofreading exonuclease activity, which corrects misinsertion errors, and by enzyme cofactors. PCNA is a pol delta cofactor, called the sliding clamp, which increases the processivity of pol delta holoenzyme. This study measures the fidelity of 3'-5' exonuclease-proficient and -deficient pol delta holoenzyme using a synthetic 30mer primer/100mer template in the presence and absence of PCNA. Although PCNA increases pol delta processivity, the presence of PCNA decreased pol delta fidelity 2-7-fold. In particular, wild-type pol delta demonstrated the following nucleotide substitution efficiencies for mismatches in the absence of PCNA: G.G, 0.728 x 10(-4); T.G, 1.82 x 10(-4); A.G, <0.01 x 10(-4). In the presence of PCNA these values increased as follows: G.G, 1.30 x 10(-4); T.G, 2.62 x 10(-4); A.G, 0.074 x 10(-4). A similar but smaller effect was observed for exonuclease-deficient pol delta (i.e., 2-4-fold increase in nucleotide substitution efficiencies in the presence of PCNA). Thus, the fidelity of wild-type pol delta in the presence of PCNA is more than 2 orders of magnitude lower than the fidelity of wild-type pol epsilon holoenzyme and is comparable to the fidelity of exonuclease-deficient pol epsilon holoenzyme.  相似文献   

4.
5.
6.
We have purified the RNA polymerase II holoenzyme from Schizosaccharomyces pombe to near homogeneity. The Mediator complex is considerably smaller than its counterpart in Saccharomyces cerevisiae, containing only nine polypeptides larger than 19 kDa. Five of these Mediator subunits have been identified as the S. pombe homologs to Rgr1, Srb4, Med7, and Nut2 found in S. cerevisiae and the gene product of a previously uncharacterized open reading frame, PMC2, with no clear homologies to any described protein. The presence of Mediator in a S. pombe RNA polymerase II holoenzyme stimulated phosphorylation of the C-terminal domain by TFIIH purified from S. pombe. This stimulation was species-specific, because S. pombe Mediator could not stimulate TFIIH purified from S. cerevisiae. We suggest that the overall structure and mechanism of the Mediator is evolutionary conserved. The subunit composition, however, has evolved to respond properly to physiological signals.  相似文献   

7.
8.
9.
10.
We have investigated the ability of DNA polymerases from SOS-induced and uninduced Escherichia coli to incorporate nucleotides at a well-defined abasic (apurinic/apyrimidinic) DNA template site and to extend these chains from this unpaired 3' terminus. A DNA polymerase activity has been purified from E. coli, deleted for DNA polymerase I, that appears to be induced 7-fold in cells following treatment with nalidixic acid. Induction of this polymerase (designated DNA polymerase X) appears to be part of the SOS response of E. coli since it cannot be induced in strains containing a noncleavable form of the LexA repressor (Ind-). The enzyme is able to incorporate nucleotides efficiently opposite the abasic template lesion and to continue DNA synthesis. Although we observe an approximate 2-fold induction of DNA polymerase III in cells treated with nalidixic acid, several lines of evidence argue that DNA polymerase X is unrelated to DNA polymerase III (pol III). In contrast to pol X, pol III shows almost no detectable ability to incorporate at or extend beyond the abasic site; incorporation efficiency at the abasic lesion is at least 100-fold larger for pol X compared to pol III holoenzyme, pol III core, or pol III* (the polymerase III holoenzyme subassembly lacking the beta subunit). Pol X does not cross-react with polyclonal antibody directed against pol III holoenzyme complex or with monoclonal antibody prepared to the alpha subunit of pol III. Despite these structural and biochemical differences, pol X appears to interact specifically with the beta subunit of the pol III holoenzyme in the presence of single-stranded binding protein. Pol X has a molecular mass of 84 kDa. Our results indicate that this novel activity is likely to be identical to DNA polymerase II of E. coli.  相似文献   

11.
12.
13.
The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RFC, and Escherichia coli single strand DNA-binding protein (SSB) and required the presence of ATP. "Passive" self-loading of PCNA onto DNA takes place in the absence of RFC, in an ATP-independent reaction, which was strongly inhibited by SSB. The nucleotide substitution error rate for pol delta holoenzyme (HE) (pol delta + PCNA + RFC) was 4.6 x 10(-4) for T.G mispairs, 5.3 x 10(-5) for G.G mispairs, and 4.5 x 10(-6) for A.G mispairs. The T.G misincorporation frequency for pol delta without the accessory proteins was unchanged. The fidelity of pol delta HE was between 1 and 2 orders of magnitude lower than that measured for the E. coli pol III HE at the same template position. This relatively low fidelity was caused by inefficient proofreading by the S. pombe polymerase-associated proofreading exonuclease. The S. pombe 3'-exonuclease activity was also extremely inefficient in excising primer-3'-terminal mismatches in the absence of dNTP substrates and in hydrolyzing single-stranded DNA. A comparison of pol delta HE with E. coli pol IIIalpha HE (lacking the proofreading exonuclease subunit) showed that both holoenzymes exhibit similar error rates for each mispair.  相似文献   

14.
15.
16.
The alpha subunit (140 kDa) of DNA polymerase III (pol III) holoenzyme has been purified to near-homogeneity from a plasmid-carrying Escherichia coli strain which overproduced the alpha subunit about 20-fold. Pol III core (containing only the alpha, epsilon, and theta subunits), produced at twice the normal level, was also purified in good yield. The isolated alpha subunit has DNA polymerase activity, which is completely inhibited by 10 mM N-ethylmaleimide or 150 mM KCl as observed in the pol III core or holoenzyme. The alpha subunit has an apparent turnover number of 7.7 nucleotides polymerized per s, compared to 20 for pol III core, and is more thermolabile. The alpha subunit lacks the 3'----5' exonuclease (proofreading) activity of pol III core; neither alpha subunit nor core (nor holoenzyme) possesses any of the previously reported 5'----3' exonuclease activity. Thus, the alpha polypeptide is the polymerase subunit and epsilon (27 kDa) is the proofreading subunit (Scheuermann, R. H., and Echols, H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 7747-7751). Together with the theta polypeptide (10 kDa), of unknown function, they form a pol III core with greater stability and catalytic efficiency.  相似文献   

17.
Schizosaccharomyces pombe DNA polymerase (pol) delta contains four subunits, pol 3, Cdc1, Cdc27, and Cdm1. In this report, we examined the role of Cdc27 on the structure and activity of pol delta. We show that the four-subunit complex is monomeric in structure, in contrast to the previous report that it was a dimer (Zuo, S., Bermudez, V., Zhang, G., Kelman, Z., and Hurwitz, J. (2000) J. Biol. Chem. 275, 5153-5162). This discrepancy between the earlier and recent observations was traced to the marked asymmetric shape of Cdc27. Cdc27 contains two critical domains that govern its role in activating pol delta. The N-terminal region (amino acids (aa) 1-160) binds to Cdc1 and its extreme C-terminal end (aa 362-369) interacts with proliferating cell nuclear antigen (PCNA). Mutants of S. pombe pol delta, containing truncated Cdc27 derivatives deficient in binding to PCNA, supported DNA replication less processively than the wild-type complex. Fusion of a minimal PCNA-binding motif (aa 352-372) to C-terminally truncated Cdc27 derivatives restored processive DNA synthesis in vitro. In vivo, the introduction of these fused Cdc27 derivatives into cdc27Delta cells conferred viability. These data support the model in which Cdc27 plays an essential role in DNA replication by recruiting PCNA to the pol delta holoenzyme.  相似文献   

18.
A recombinant protein was obtained in Escherichia coli by subcloning part of the Schizosaccharomyces pombe POL1 gene at the 3'-end of lacZ. Antibodies raised against this protein were used to identify the POL1 gene product in extracts of exponentially growing S. pombe cells. A major 170-kDa protein, whose structure and properties were typical of the catalytic subunit of eukaryotic DNA polymerases alpha (pol alpha), was detected. The same antibodies were used to trace pol alpha and to quantify its level during the S. pombe cell cycle. We found that pol alpha was present at all stages of the cycle and that its cellular pool was subject to limited (three-fold) increase in G1 and S phases, with a decline to the initial level soon after. In addition, we found that a second form of pol alpha with slightly lower molecular weight (165 kDa) existed only during late G1 and S phases. Moreover, absence of initiation or perturbations in the course of DNA replication induced overproduction of the 165-kDa form.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号