首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas fluorescensstrainPf7–14 was evaluated for biological control of rice blast in field experiments. StrainPf7–14 was formulated in methylcellulose:talc (1:4) and applied to IR50 rice (Oryza sativa) seeds as a seed treatment and as foliar sprays in seedbed and field experiments. When applied as a seed treatment followed by three foliar applications, the strain provided a 68.5% suppression of rice blast in the seedbed experiment and a 59.6% suppression in the field experiment. The persistence and migration ofPf7–14 on the rice plant was studied with the aid oflacZYgenes inserted into the bacterium. In greenhouse experiments,Pf7–14gal was detected on rice roots at 106to 105cfu/g of root tissue for 110 days, the duration of the rice crop. Migration of the strain from the seeds to the leaves occurred only until the seedlings were 16 days old. WhenPf7–14 was applied to the rice plants by foliar sprays, 104cfu of the bacterium per gram of leaf tissue was detected for the next 40 days. The limited migration of the bacterial biocontrol agent emphasizes the need for multiple foliar applications of the bacterium to sustain the bacterial population for effective suppression of rice blast.  相似文献   

2.
沙月霞 《微生物学通报》2017,44(11):2734-2740
芽胞杆菌具有人畜安全、不污染环境、病原菌不易产生抗药性、抗逆性强和促进植物生长等优点,是稻瘟病防治上的重要生防菌。芽胞杆菌的生防机制主要包括竞争作用、拮抗作用和诱导抗病性。芽胞杆菌定殖在水稻植株上,产生抗菌活性物质抑制稻瘟病菌的生长,诱导水稻产生抗病性,对水稻植株具有促生作用,可以挽回水稻产量损失。芽胞杆菌可以制备生防制剂用来防治我国南方稻区和北方稻区的稻瘟病危害,在水稻产业的可持续发展中对稻瘟病的生物防治具有指导意义。本文主要综述芽胞杆菌在防治水稻稻瘟病中的应用研究、芽胞杆菌在防治水稻稻瘟病中的生防机制、影响稻瘟病生防芽胞杆菌防效的因素。  相似文献   

3.
4.
Fluorescent and nonfluorescent strains of bacteria isolated from rice rhizospheres on the International Rice Research Institute (IRRI) farm were evaluated for in vitro antibiosis towards the sheath blight (ShB) pathogen Rhizoctonia solani, and for suppression of ShB in detached rice leaves. Efficient strains were located on the basis of consistent performance in two laboratory tests. Among nine efficient strains, 3 strains were identified as Pseudomonas fluorescens, 5 strains were tentatively identified as Bacillus spp. and one strain was identified as Enterobacter. In three greenhouse tests lowland rice soils with optimum pH for rice growth (pH 5.5–6.5), acidic pH (pH 5.0) and boron toxicity were found more suitable for biological control of ShB and, less frequently, also yield increases than were alkaline (pH 6.9) and zinc-deficient soils. Bacterial treatments afforded significant ShB reductions in 3 field experiments, but no significant yield increases resulted. In direct-seeded rice best performances by bacterial treatments in terms of ShB suppression were 66 and 98% during DS 1988 and WS 1988, respectively, which were comparable to or better than the performance of validamycin (a fungicide routinely used for ShB control) which afforded 42 and 63% disease suppression, respectively, in the same experiments. Although bacterial treatments caused ShB reductions both in direct-seeded and transplanted rice crops, disease control was more pronounced in direct-seeded than in transplanted crops. These results indicate that carefully selected strains of bacterial antagonists have the potential for ShB suppression in rice at least in areas where direct-seeding is practised.  相似文献   

5.
沙月霞  沈瑞清 《生态学报》2019,39(22):8442-8451
水稻内生细菌群落是反映植株内环境是否健康稳定的重要生物学指标,芽胞杆菌是防治水稻病害的重要生防微生物。为揭示芽胞杆菌浸种处理对水稻内生细菌群落结构的影响,采用Illumina MiSeq测序的方法对水稻内生细菌的16S rRNA基因进行测序,剖析了芽胞杆菌浸种处理对不同水稻组织内生细菌的微生态调控作用。结果表明,3种芽胞杆菌浸种处理可以提高水稻根和茎部内生细菌群落的丰富度和均匀度,降低叶部内生细菌群落的丰富度和均匀度,显著增加根部内生细菌群落多样性。变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)是水稻根部和茎部共有优势菌门,厚壁菌门和芽胞杆菌属(Bacillus)是叶部共有优势菌门和属。芽胞杆菌浸种处理显著提高了叶部内生厚壁菌门和芽胞杆菌属的相对丰度,增加了根系和茎部组织内生细菌的分类单元OTU(Operational Taxonomic Units)数量,对叶部组织影响不明显;降低了茎部和叶部中参与各种代谢通路的内生细菌丰度,显著增加了根部参与代谢通路的内生细菌丰度。因此,3种芽胞杆菌浸种处理可以显著改变水稻根部、茎部和叶部内生细菌群落结构,改善水稻生长的微生态环境。  相似文献   

6.
Pseudomonas aeruginosa 7NSK2 induces resistance in dicots through a synergistic interaction of the phenazine pyocyanin and the salicylic acid-derivative pyochelin. Root inoculation of the monocot model rice with 7NSK2 partially protected leaves against blast disease (Magnaporthe grisea) but failed to consistently reduce sheath blight (Rhizoctonia solani). Only mutations interfering with pyocyanin production led to a significant decrease in induced systemic resistance (ISR) to M. grisea, and in trans complementation for pyocyanin production restored the ability to elicit ISR. Intriguingly, pyocyanin-deficient mutants, unlike the wild type, triggered ISR against R. solani. Hence, bacterial pyocyanin plays a differential role in 7NSK2-mediated ISR in rice. Application of purified pyocyanin to hydroponically grown rice seedlings increased H202 levels locally on the root surface as well as a biphasic H202 generation pattern in distal leaves. Co-application of pyocyanin and the antioxidant sodium ascorbate alleviated the opposite effects of pyocyanin on rice blast and sheath blight development, suggesting that the differential effectiveness of pyocyanin with respect to 7NSK2-triggered ISR is mediated by transiently elevated H202 levels in planta. The cumulative results suggest that reactive oxygen species act as a double-edged sword in the interaction of rice with the hemibiotroph M. grisea and the necrotroph R. solani.  相似文献   

7.
Aims:  To understand the diversity, taxonomy and antagonistic potential of rice-associated bacteria, and to discover new bacteria for biocontrol of rice foliar pathogens.
Methods and Results:  Amplified ribosomal DNA restriction analysis (ARDRA), BOX-PCR and 16S rRNA gene sequence analysis were used to identify the diversity of 203 rice-associated antagonistic bacteria. Eleven potential biocontrol bacteria were used to test their biological control of rice blast in a natural field experiment. Eleven different genera were encountered in five divisions, including Bacilli , Alphaproteobacteria , Betaproteobacteria , Gammaproteobacteria and Deinococci . The most prominent genus in all microenvironments was Bacillus (68·5%). The efficacy of rice leaf blast biocontrol was 64·35% for strain 1Pe2, 57·86% for strain 2R37 and 56·44% for strain 1Re14.
Conclusions:  Biocontrol data from the field experiments demonstrated no positive correlation between antagonism, physiological characteristics and biocontrol efficacy. There was significant diversity among the rice-associated bacteria isolated from different microenvironments. The most prominent genus of all microenvironments was Bacillus . Brevibacillus brevis strain 1Pe2 and Deinococcus aquaticus strain 1Re14 have good potential for field application and commercial use.
Significance and Impact of the Study:  This is the first attempt to study the diversity and identification of rice-associated antagonistic bacteria from different microenvironments, and endophytic bacteria Deinococcus aquaticus strain 1Re14, Acidovorax sp. isolate 3Re21 and Brevibacillus brevis strain 1Pe2 are first reported as rice-associated bacteria.  相似文献   

8.
Biological control of soil-borne pathogens comprises the decrease of inoculum or of the disease producing activity of a pathogen through one or more mechanisms. Interest in biological control of soil-borne plant pathogens has increased considerably in the last few decades, because it may provide control of diseases that cannot or only partly be managed by other control strategies. Recent advances in microbial and molecular techniques have significantly contributed to new insights in underlying mechanisms by which introduced bacteria function. Colonization of plant roots is an essential step for both soil-borne pathogenic and beneficial rhizobacteria. Colonization patterns showed that rhizobacteria act as biocontrol agents or as growth-promoting bacteria form microcolonies or biofilms at preferred sites of root exudation. Such microcolonies are sites for bacteria to communicate with each other (quorum sensing) and to act in a coordinated manner. Elicitation of induced systemic resistance (ISR) by plant-associated bacteria was initially demonstrated using Pseudomonas spp. and other Gram-negative bacteria. Several strains of the species Bacillus amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B. sphaericus elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts. Elicitation of ISR by these strains has been demonstrated in greenhouse or field trials on tomato, bell pepper, muskmelon, watermelon, sugar beet, tobacco, Arabidopsis sp., cucumber, loblolly pine, and two tropical crops (long cayenne pepper and green kuang futsoi). Protection resulting from ISR elicited by Bacillus spp. has been reported against leaf-spotting fungal and bacterial pathogens, systemic viruses, a crown-rotting fungal pathogen, root-knot nematodes, and a stem-blight fungal pathogen as well as damping-off, blue mold, and late blight diseases. This progress will lead to a more efficient use of these strains which is worthwhile approach to explore in context of biocontrol strategies.  相似文献   

9.
目的:研究冠心病患者经皮冠状动脉介入(PCI)术后感染病原菌分布特征及支架内再狭窄(ISR)的影响因素。方法:纳入从2015年1月~2018年1月于我院接受PCI术治疗的冠心病患者460例作为研究对象。采集PCI术后发生感染患者感染部位的分泌物或血液标本,分析病原菌分布特征。此外,将所有患者按照PCI术后是否存在ISR分成ISR组120例与非ISR组340例。比较两组基线资料、生化指标水平,并采用多因素Logistic回归分析影响ISR的危险因素。结果:29例患者发生医院感染,共培养分离获得病原菌38株,其中革兰阴性菌13株,占比34.21%,革兰阳性菌22株,占比57.89%,真菌3株,占比7.89%。ISR组男性、糖尿病、吸烟史人数占比均显著高于非ISR组(均P0.05)。ISR组空腹血糖(FPG)、总胆固醇(TC)、血尿酸(UA)、超敏C反应蛋白(hs-CRP)水平均显著高于非ISR组(均P0.05)。经多因素Logistic回归分析可得:糖尿病、吸烟史、TC(较高)、UA(较高)、hs-CRP(较高)均是影响ISR的危险因素(均P0.05)。结论:引起冠心病患者PCI术后感染的病原菌以革兰阳性菌为主,冠心病患者合并糖尿病、吸烟史以及随着TC、UA、hs-CRP水平的升高,PCI术后ISR的发生风险随之增加。  相似文献   

10.
粳稻子预44抗LP11稻瘟病菌基因Pizy6(t)的定位   总被引:2,自引:0,他引:2  
稻瘟病是世界范围内严重威胁水稻(Oryza sativa)生产可持续发展的主要病害之一,每年造成10%–30%的水稻产量损失。抗瘟水稻品种的培育和育种利用是解决稻瘟病危害最经济有效的方法。对新的致病性菌株进行分离和筛选是定位与克隆抗病新基因及抗病育种的基础。选择分离自不同稻瘟病发生重灾区的单孢菌株,对广谱抗瘟水稻子预44和感病水稻江南香糯进行致病性鉴定,筛选出两材料间致病性差异明显的5个菌株;进一步利用子预44、湘资3150、9311、日本晴、丽江新团黑谷、中花11、TP309和江南香糯8个抗瘟性不同的水稻材料,对筛选的菌株进行致病性鉴定。结果显示,LP11能使广谱抗瘟籼稻湘资3150严重发病,推测其很可能是新进化出来的强致病菌株。利用子预44和江南香糯杂交构建的F2群体进行抗性遗传分析,结果表明子预44对LP11菌株的抗性是由单显性基因控制。利用SSR分子标记和图位克隆方法在子预44中定位了1个抗稻瘟病基因Pizy6(t)。研究结果不仅为抗病相关研究提供了有价值的新菌株,而且为子预44中抗稻瘟病基因Pizy6(t)的克隆奠定了基础。  相似文献   

11.
Aim:  To isolate and identify black pepper ( Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease.
Methods and Results:  Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici . Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in green house trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa ( Pseudomonas EF568931), IISRBP 25 as P. putida ( Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium ( B. megaterium EU071712) based on 16S rDNA sequencing.
Conclusion:  Black pepper associated P. aeruginosa , P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper.
Significance and Impact of the Study:  This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.  相似文献   

12.
Of 70 micro‐organisms (fungi, bacteria and actinomycetes) isolated from soil using vegetable tissue baits, 16 produced substances in culture fluids capable of preventing the development of blast caused by Magnaporthe oryzae on rice leaves with little or no inhibitory effect on the conidial germination of the pathogen. Isolate KS‐F14, which secreted substances capable of activating resistance in untreated leaves, was selected and identified as Fusarium solani. The resistance‐inducing substances were effective at pH values ranging from 5 to 10 and were stable under high temperatures, maintaining approximately the same level of activity even after autoclaving for 20 min. After application, the activated resistance in rice leaves persisted for 14 days. The polar solvent extracts of freeze‐dried KS‐F14 secretions were effective in activating resistance against M. oryzae in rice plants. The non‐polar solvent extracts were also effective, albeit not as effective as the polar solvent extracts, indicating that although the majority of the secreted resistance‐inducing compounds are hydrophilic, some of the compounds are hydrophobic. Treating secretions with cation or anion exchange resins only partially reduced their resistance‐inducing ability, suggesting that the resistance‐inducing components include both charged and non‐charged compounds. The resistance‐inducing compounds produced by F. solani have the potential to be developed into a commercial product for the control of rice blast and possibly other plant diseases.  相似文献   

13.
Summary The incidence of H2-oxidizing chemolithotrophic bacteria associated with rice grown under continuous wetland, upland, and rainfed wetland conditions was studied by14C-autoradiographic technique in a neutral soil at IRRI (Maahas) and an acid rainfed wetland soil (Luisiana).In Maahas soil, H2-oxidizing chemolithotrophic bacteria were not detected in the endorhizosphere, rhizosphere, and nonrhizosphere soil of rice grown under dryland conditions. Under continuously flooded conditions a very large population of these bacteria were found in the endorhizosphere but not in the oxidized and reduced soil.A very low population of these bacteria were found in the endorhizosphere and basal culm of rice grown under rainfed wetland conditions at Luisiana. Bacteria isolated from Maahas wetland rice and inoculated to rice seedling planted in Luisiana soil failed to establish.Both Maahas and Luisiana soils consumed externally supplied H2 and produced H2 and CH4 almost at the same rate when they were amended with rice straw or sucrose. This paper discusses possible causes of variation in the number of these bacteria and their distribution in rice grown under different cultural and soil conditions.  相似文献   

14.
Twelve rice cultivars with differential resistance to rice blast disease (Magnaporthe oryzae (Hebert) Barr), including Tetep (R), IR36 (MR) and Lijiangxituanhegu (HS), and nine locally planted rice cultivars in Jiangxi helped establish an identification method for rice resistance to neck blast. We describe a new technique of dropping a spore suspension on the panicle segment in vitro (DSSPS). This technique involved rice panicles that were initially 0.5–2 cm in length and then cut into a 7‐ to 8‐cm segment (i.e. an upper node of 1 cm and a lower node of 6–7 cm). The segment was placed into a Petri dish with a stack of sterile water saturated filter paper. The suspension (4 μl 1 × 105spores/ml) was placed at each of three locations on the segment (with an approximate interval of 3 cm). Disease severity was then assessed according to a 0–9 scale after incubating for 9 days with a 12 h/12 h (light/day cycle) at 28°C. Choosing a suitable developmental stage of the rice panicle and blast strains was a key to evaluate resistance accurately. DSSPS is a simple and accurate method of identifying rice resistance to neck blast as compared to injecting the spore suspension into the rice panicle in vivo and resistance identification in natural nurseries. It is stressed that at least 20 single‐spore strains are needed to accurately assess rice resistance to neck blast. We tested 1005 rice cultivars for neck blast resistance in Jiangxi province during 2010–2015, which showed an accuracy of 85.77% by DSSPS as compared with natural nursery data.  相似文献   

15.
生防放线菌Ahn75的荧光标记及其在水稻中的定殖   总被引:3,自引:2,他引:1  
【背景】目前gfp标记基因已成为研究靶标微生物与宿主之间互作的一种重要工具。利用gfp基因标记生防菌株,可以对生防菌株的生存及定殖能力进行有效追踪。【目的】对生防放线菌Ahn75进行荧光标记,探讨其在水稻中的定殖规律,为研究Ahn75的稻瘟病防治机制奠定基础。【方法】首先通过电激转化将含绿色荧光标记基因(gfp)的质粒pIJ8655导入大肠杆菌ET12567中,然后采用接合转移的方法将gfp整合到Ahn75基因组上;通过平板对峙试验检验Ahn75-GFP在标记绿色荧光后对稻瘟病病原菌的抑菌活性;采用喷施孢子液的方式将带荧光标记的Ahn75-GFP定殖水稻,并利用荧光显微镜观察生防菌在水稻中的定殖情况;对定殖水稻中的内生菌进行重分离,探究菌株在水稻组织中的分布规律。【结果】PCR扩增和荧光观察表明,绿色荧光标记基因成功整合到生防放线菌Ahn75中。通过平板对峙试验,发现Ahn75-GFP对稻瘟病病原菌抑菌活性与原始菌株没有显著差别。在荧光显微镜下,可以观察到Ahn75-GFP能稳定定殖于水稻的根、茎、叶等组织中,而水稻内生菌重分离试验表明该菌株在茎中的定殖力最强。【结论】获得一株绿色荧光标记生防菌株Ahn75-GFP,结果显示该菌株定殖水稻效果良好,这对于研究Ahn75的稻瘟病防治具有重要意义。  相似文献   

16.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

17.
Suspension cultured cells of six rice cultivars differing in their sensitivity to blast were treated with mycelial wall hydrolysates prepared from seven isolates belonging to different Pyricularia grisea lineages. Soon after elicitor addition, rice cells produced significant amounts of superoxide anion, which was rapidly converted into diffusible peroxide. Maximal effects were achieved at 50 mg L-1 elicitor. In all cases, a 7 to 13-fold increase in the basal rate of reactive oxygen species production was found. Neither differential effects among strains nor clear relationships between lineage and the resulting oxidative burst were evident. Interestingly, a good correlation was found between basal (and elicited) levels of peroxide generation and the overall tolerance of rice cultivars to the pathogen. About two days after elicitation, cell death occurred proportional to the amount of hydrogen peroxide released. Peroxide was required to trigger loss of cell viability, but the latter was not due to a direct toxic effect, suggesting the induction of programmed cell death. Results represent the first data aimed to develop in vitro tests for pathogenicity prediction of Italian blast lineages toward rice cultivars.  相似文献   

18.
Selected nonpathogenic rhizobacteria with biological disease control activity are able to elicit an induced systemic resistance (ISR) response that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Ten ecotypes of Arabidopsis thaliana were screened for their potential to express rhizobacteria-mediated ISR and pathogen-induced SAR against the leaf pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). All ecotypes expressed SAR. However, of the 10 ecotypes tested, ecotypes RLD and Wassilewskija (Ws) did not develop ISR after treatment of the roots with nonpathogenic Pseudomonas fluorescens WCS417r bacteria. This nonresponsive phenotype was associated with relatively high susceptibility to Pst infection. The F1 progeny of crosses between the non-responsive ecotypes RLD and Ws on the one hand, and the responsive ecotypes Columbia (Col) and Landsberg erecta (Ler) on the other hand, were fully capable of expressing ISR and exhibited a relatively high level of basal resistance, similar to that of their WCS417r-responsive parent. This indicates that the potential to express ISR and the relatively high level of basal resistance against Pst are both inherited as dominant traits. Analysis of the F2 and F3 progeny of a Col x RLD cross revealed that inducibility of ISR and relatively high basal resistance against Pst cosegregate in a 3:1 fashion, suggesting that both resistance mechanisms are monogenically determined and genetically linked. Neither the responsiveness to WCS417r nor the relatively high level of basal resistance against Pst were complemented in the F1 progeny of crosses between RLD and Ws, indicating that RLD and Ws are both affected in the same locus, necessary for the expression of ISR and basal resistance against Pst. The corresponding locus, designated ISR1, was mapped between markers B4 and GL1 on chromosome 3. The observed association between ISR and basal resistance against Pst suggests that rhizobacteria-mediated ISR against Pst in Arabidopsis requires the presence of a single dominant gene that functions in the basal resistance response against Pst infection.  相似文献   

19.
水稻稻瘟病拮抗菌株的筛选   总被引:4,自引:0,他引:4  
从水稻病健叶、茎和根组织以及稻田土分离得到的 90个菌株中 ,筛选出对稻瘟病菌分生孢子萌发和菌丝生长均有较强抑制能力的 2个菌株 ,并对这 2个菌株进行室外盆栽试验。结果表明 ,它们均可显著地降低稻瘟病的发生。经初步鉴定 ,这 2个拮抗菌株分别为Enterobactersp.(X2 3 )和Streptomycessp .(Y42 )。  相似文献   

20.
南方红豆杉根际溶无机磷细菌的筛选、鉴定及其促生效果   总被引:5,自引:0,他引:5  
Ren J  Liu H  Wu X  Wang Q  Ren Y  Liu Y  Feng Y 《微生物学报》2012,52(3):295-303
【目的】对南方红豆杉(Taxus chinensis var.mairei)根际溶无机磷细菌进行了分离、筛选与鉴定,并对获得的高效溶磷菌株进行了温室盆栽试验。本研究为通过生物途径改善南方红豆杉磷素供应,促进其生长提供了优良的菌株资源。【方法】利用选择培养基从南方红豆杉根际土壤中共分离出具溶磷能力的细菌;采用NBRI-BPB培养基进行复筛获得溶磷能力较强的溶无机磷细菌;并采用钼锑抗比色法测量其在NBRIP培养基中经4d发酵后的可溶性磷含量;通过形态指标、生理生化测定、Biolog系统和16S rDNA序列分析鉴定细菌种类;并进行了溶磷菌株的室内盆栽实生苗接种试验。【结论】从南方红豆杉根际共分离出4株高效溶磷细菌,分别鉴定为荧光假单胞菌(Pseudomonas fluorescens)、蜡状芽胞杆菌(Bacillus cereus)、草木樨中华根瘤菌(Sinorhizobium meliloti)和地衣芽胞杆菌(Bacillus licheniformis);4株细菌对南方红豆杉苗期的生长有明显的促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号