首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Calcium independent mutants of two Yersinia pestis strains were studied. Insertions of IS100 element at three different sites of plasmid pCad within calcium dependence region were detected in Y. pestis EV, as well as two extensive deletions covering the whole region. It was shown that IS100 carries no HindIII sites. Novel IS element of Y. pestis designated IS101 was discovered in strain 358, in addition to IS100. It is distinguished by a slightly smaller size, HindIII site presence and high specificity of integration.  相似文献   

2.
DNA probes for detection of the plague agent Yersinia pestis were made on a basis of its three typical extrachromosomal replicons. The recombinant plasmid pBS2 including pBR327 vector and SalGI-BspRI fragment of the plasmid pFra was constructed. The above fragment is connected with synthesis of Y. pestis capsular antigen and it is a 400 bp species-specific DNA probe called F1 which is suitable for identification of Y. pestis species that bears the 60 mdal plasmid. The DNA probes called P1 was made on a basis of the plasmid pPst; it is the 460 BglII-BamHI fragment of the fibrinolysin-coagulase gene suitable for species-specific detection of Y. pestis species that bears the 60 mdal plasmid. The P1 fragment was cloned into the pAT153 vector and the constructed recombinant plasmid was called pEK7. The recombinant plasmid pCL1, including the pBR325 vector and the 6th BamHI fragment of Y. pestis EV plasmid pCad was constructed. The above fragment includes the replication origin of the pCad and it is hybridized to the pCad-bearing strains of Y. pestis and Y. tuberculosis only. Thus, it may be a basis for a bi-species-specific DNA probe making. These three recombinant plasmids are considered as a test-system for detection of both typical and atypical strains of Y. pestis.  相似文献   

3.
The genetic analysis of Y. pestis virulence factors accomplished in the 358 strain isogenic system allowed us to determine a minimal set of known factors providing pathogenicity. The combination of chromosomal marker Pgm+ and calcium dependence plasmid (pCad) is shown to be sufficient for preserving the virulence of Y. pestis. Experimental modelling of virulence in this microorganism by the genetic exchange methods was carried out. The reduced virulence of the strains Pgm+ and pCad+ for guinea pigs was detected.  相似文献   

4.
Acid shift (pH 4.0) of liquid nutrient medium containing 20 mM Mg2+ created conditions in vitro simulating the internal environment of phagolysosome into which Yersinia pestis captured by a macrophage get in vivo. The capacity of Y. pestis to survive and multiply under these conditions irrespective of the plasmid composition of strains was confirmed experimentally. Y. pestis possesses a specific mechanism of fibrinolytic activity inhibition, preventing proteolytic degradation under the effect of Ca-dependent polypeptide (Yops) fibrinolysin and potentiating, in addition to these latter, the production of the so-called "acid" proteins by Y. pestis, coded for by pCad2+ or chromosome, including the potentially new members of LCR family. The culturing conditions affect the length of O-specific lateral chains of Y. pestis lipopolysaccharide (LPS), which corresponds to LPS SR, but not R form.  相似文献   

5.
The relation of Yersinia pestis calcium dependence plasmid (pCad) to known Inc FI (F'lac, R386, pOX38) and IncFV (F0lac) plasmids has been studied. Evidence that plasmid pCad of Yersinia pestis belongs to FI incompatibility group is presented.  相似文献   

6.
The majority of virulence factors including the 12 Yersinia outer membrane proteins (Yops), 29 Yop secretion proteins (Ysc) and few specific Yop chaperone (Syc) are contributed by the 70 kb LCR middle plasmid of Yersinia pestis. Yersinia pestis isolates recovered during 1994 plague outbreak and rodent surveillance samples of Southern states of India were studied for the presence of important Yops by the conventional procedure of partially purifying outer membrane proteins (Omps) after cultivation in calcium deficient media. Prominent bands numbering 4-5 between 34-42 kDa region corresponding to important Yops were seen in all the isolates as well as in other Yersinia and non-Yersinia species by SDS-PAGE. Western blotting with the polyclonal antisera raised against these Omp preparations revealed few immuno-reactive bands that appeared to be shared among Y. pestis, Y. pseudotruberculosis, Y. enterocolitica, Y. fredrocksenii, Y. intermedia, Y. kristensenii and E. coli. Three recombinant Yop proteins namely, YopM, YopB and LcrV were produced and antisera to these proteins could reveal presence of these Yops in the Y. pestis Omp preparations. In order to further characterize the important Yops among Omps, attempts were made to generate monoclonal antibodies against Omp preparation. Three of the 4 stable reactive clones that were obtained, when tested, had extensive cross-reactions among pathogenic Yersinia species, Y. pestis and Y. pseudotuberculosis isolates, other Yersinia species and the members of Enterobacteriaceae in dot-ELISA and Western blotting. One of the monoclonal antibodies, YP1, exhibited reaction to all the pathogenic Yersinia species and the isolates, with restricted cross-reactivity to Y. intermedia, Y. kristensenii, K. pneumoniae. None of the 4 monoclonal antibodies had reactions with the 3 recombinant Yop proteins. It appears that under low calcium response, the Y. pestis not only activates secretion of Yops but also a large number of other proteins, which as per the present observations are cross-reactive within the family Enterobacteriaceae.  相似文献   

7.
Previously, curing experiments suggested that plasmid pWV05 (17.5 megadaltons [Md]) of Streptococcus cremoris Wg2 specifies proteolytic activity. A restriction enzyme map of pWV05 was constructed, the entire plasmid was subcloned in Escherichia coli with plasmids pBR329 and pACYC184. A 4.3-Md HindIII fragment could not be cloned in an uninterrupted way in E. coli but could be cloned in two parts. Both fragments showed homology with the 9-Md proteinase plasmid of S. cremoris HP. The 4.3-Md HindIII fragment was successfully cloned in Bacillus subtilis on plasmid pGKV2 (3.1 Md). Crossed immunoelectrophoresis of extracts of B. subtilis carrying the recombinant plasmid (pGKV500; 7.4 Md) showed that the fragment specifies two proteins of the proteolytic system of S. cremoris Wg2. PGKV500 was introduced in a proteinase-deficient Streptococcus lactis strain via protoplast transformation. Both proteins were also present in cell-free extracts of S. lactis(pGKV500). In S. lactis, pGKV500 enables the cells to grow normally in milk with rapid acid production, indicating that the 4.3-Md HindIII fragment of plasmid pWV05 specifies the proteolytic activity of S. cremoris Wg2.  相似文献   

8.
Previously, curing experiments suggested that plasmid pWV05 (17.5 megadaltons [Md]) of Streptococcus cremoris Wg2 specifies proteolytic activity. A restriction enzyme map of pWV05 was constructed, the entire plasmid was subcloned in Escherichia coli with plasmids pBR329 and pACYC184. A 4.3-Md HindIII fragment could not be cloned in an uninterrupted way in E. coli but could be cloned in two parts. Both fragments showed homology with the 9-Md proteinase plasmid of S. cremoris HP. The 4.3-Md HindIII fragment was successfully cloned in Bacillus subtilis on plasmid pGKV2 (3.1 Md). Crossed immunoelectrophoresis of extracts of B. subtilis carrying the recombinant plasmid (pGKV500; 7.4 Md) showed that the fragment specifies two proteins of the proteolytic system of S. cremoris Wg2. PGKV500 was introduced in a proteinase-deficient Streptococcus lactis strain via protoplast transformation. Both proteins were also present in cell-free extracts of S. lactis(pGKV500). In S. lactis, pGKV500 enables the cells to grow normally in milk with rapid acid production, indicating that the 4.3-Md HindIII fragment of plasmid pWV05 specifies the proteolytic activity of S. cremoris Wg2.  相似文献   

9.
Yersinia pestis, the etiologic agent of bubonic plague, contains a 75-kb virulence plasmid, called pCD1 in Y. pestis KIM. The low-Ca(2+)-response genes of Y. pestis regulate both bacterial growth and the expression of pCD1-encoded virulence determinants in response to temperature and the presence of Ca2+ or nucleotides. This study characterizes the nucleotide sequence and protein product of the lcrD locus. An lcrD mutant, in contrast to the parent Y. pestis, did not undergo growth restriction or induce strong expression of the V antigen when grown under conditions (37 degrees C, no Ca2+) expected to elicit maximal expression of pCD1 genes. DNA sequence analysis of the cloned lcrD locus showed a single open reading frame that could encode a protein with a molecular weight of 77,804 and a pI of 4.88. LcrD was identified as a 70-kDa inner membrane protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis. LcrD membrane topology was investigated by using lcrD-phoA translational fusions generated with the transposon TnphoA. The alkaline phosphatase activities of the resultant hybrid proteins were consistent with a model predicting eight amino-terminal transmembrane segments that anchor a large cytoplasmic carboxyl-terminal domain to the inner membrane.  相似文献   

10.
Western blot (immunoblot) analysis of Bacillus subtilis cell extracts detected two proteins that cross-reacted with monospecific polyclonal antibody raised against Escherichia coli initiation factor 2 alpha (IF2 alpha). Subsequent Southern blot analysis of B. subtilis genomic DNA identified a 1.3-kilobase (kb) HindIII fragment which cross-hybridized with both E. coli and Bacillus stearothermophilus IF2 gene probes. This DNA was cloned from a size-selected B. subtilis plasmid library. The cloned HindIII fragment, which was shown by DNA sequence analysis to encode the N-terminal half of the B. subtilis IF2 protein and 0.2 kb of upstream flanking sequence, was utilized as a homologous probe to clone an overlapping 2.76-kb ClaI chromosomal fragment containing the entire IF2 structural gene. The HindIII fragment was also used as a probe to obtain overlapping clones from a lambda gt11 library which contained additional upstream and downstream flanking sequences. Sequence comparisons between the B. subtilis IF2 gene and the other bacterial homologs from E. coli, B. stearothermophilus, and Streptococcus faecium displayed extensive nucleic acid and protein sequence homologies. The B. subtilis infB gene encodes two proteins, IF2 alpha (78.6 kilodaltons) and IF2 beta (68.2 kilodaltons); both were expressed in B. subtilis and E. coli. These two proteins cross-reacted with antiserum to E. coli IF2 alpha and were able to complement in vivo an E. coli infB gene disruption. Four-factor recombination analysis positioned the infB gene at 145 degrees on the B. subtilis chromosome, between the polC and spcB loci. This location is distinct from those of the other major ribosomal protein and rRNA gene clusters of B. subtilis.  相似文献   

11.
A 5.9-kb DNA fragment was cloned from Pseudomonas aeruginosa PA103 by its ability to functionally complement a fur mutation in Escherichia coli. A fur null mutant E. coli strain that contains multiple copies of the 5.9-kb DNA fragment produces a 15-kDa protein which cross-reacts with a polyclonal anti-E. coli Fur serum. Sequencing of a subclone of the 5.9-kb DNA fragment identified an open reading frame predicted to encode a protein 53% identical to E. coli Fur and 49% identical to Vibrio cholerae Fur and Yersinia pestis Fur. While there is extensive homology among these Fur proteins, Fur from P. aeruginosa differs markedly at its carboxy terminus from all of the other Fur proteins. It has been proposed that this region is a metal-binding domain in E. coli Fur. A positive selection procedure involving the isolation of manganese-resistant mutants was used to isolate mutants of strain PA103 that produce altered Fur proteins. These manganese-resistant Fur mutants constitutively produce siderophores and exotoxin A when grown in concentrations of iron that normally repress their production. A multicopy plasmid carrying the P. aeruginosa fur gene restores manganese susceptibility and wild-type regulation of exotoxin A and siderophore production in these Fur mutants.  相似文献   

12.
Diversification of bacterial species and pathotypes is largely caused by horizontal transfer of diverse DNA elements such as plasmids, phages and genomic islands (e.g. pathogenicity islands, PAIs). A PAI called high-pathogenicity island (HPI) carrying genes involved in siderophore-mediated iron acquisition (yersiniabactin system) has previously been identified in Yersinia pestis, Y. pseudotuberculosis and Y. enterocolitica IB strains, and has been characterized as an essential virulence factor in these species. Strikingly, an orthologous HPI is a widely distributed virulence determinant among Escherichia coli and other Enterobacteriaceae which cause extraintestinal infections. Here we report on the HPI of E. coli strain ECOR31 which is distinct from all other HPIs described to date because the ECOR31 HPI comprises an additional 35 kb fragment at the right border compared to the HPI of other E. coli and Yersinia species. This part encodes for both a functional mating pair formation system and a DNA-processing region related to plasmid CloDF13 of Enterobacter cloacae. Upon induction of the P4-like integrase, the entire HPI of ECOR31 is precisely excised and circularised. The HPI of ECOR31 presented here resembles integrative and conjugative elements termed ICE. It may represent the progenitor of the HPI found in Y. pestis and E. coli, revealing a missing link in the horizontal transfer of an element that contributes to microbial pathogenicity upon acquisition.  相似文献   

13.
14.
The genes for the cell surface associated antigen CS3, produced by CFA/II type enterotoxigenic Escherichia coli, have been cloned in the plasmid vector pBR322 to produce a family of recombinant plasmids. These plasmids contain a series of HindIII fragments of which a fragment of 4.6 kb is common to all those expressing CS3. One of these plasmids, pPM474, has been subjected to mutagenesis with Tn1725 and deletions generated using Bal31. This has defined a minimum region of 3.75 kb necessary for the production of CS3 on the cell surface and implying genetic complexity as has been observed with other fimbrial antigens. Analysis of the plasmid encoded proteins in E. coli K-12 minicells has confirmed this complexity.  相似文献   

15.
The translation products of chromosomal DNAs of Pseudomonas aeruginosa encoding phospholipase C (heat-labile hemolysin) have been examined in T7 promoter plasmid vectors and expressed in Escherichia coli cells. A plasmid carrying a 4.7-kilobase (kb) DNA fragment was found to encode the 80-kilodalton (kDa) phospholipase C as well as two more proteins with an apparent molecular mass of 26 and 19 kDa. Expression directed by this DNA fragment with various deletions suggested that the coding region for the two smaller proteins was contained in a 1-kb DNA region. Moreover, the size of both proteins was reduced by the same amount by an internal BglII-BglII DNA deletion, suggesting that they were translated from overlapping genes. Similar results were obtained with another independently cloned 6.1-kb Pseudomonas DNA, which in addition coded for a 31-kDa protein of opposite orientation. The nucleotide sequence of the 1-kb region above revealed an open reading frame with a signal sequence typical of secretory proteins and a potential in-phase internal translation initiation site. Pulse-chase and localization studies in E. coli showed that the 26-kDa protein was a precursor of a secreted periplasmic 23-kDa protein (PlcR1) while the 19-kDa protein (PlcR2) was mostly cytoplasmic. These results indicate the expression of Pseudomonas in-phase overlapping genes in E. coli.  相似文献   

16.
The fragment of the structural gene coding for the Fc-receptor of Streptococcus Valente (G group) has been cloned. The resulting recombinant plasmid pPGSV1 contains the O, kb HindIII fragment of streptococcal chromosomal DNA inserted into the vector plasmid pUC19 and determines the expression of the 31 kD protein in Escherichia coli cells. The protein binds the immunoglobulins of human, rabbit, guinea pig origin, but in contrast to the G protein of another G group streptococcus it is nonreactive with mouse, pig and sheep IgG.  相似文献   

17.
Tn5-tagged invasion plasmid DNA (pWR110) from Shigella flexneri serotype 5 (strain M90T) was cloned into the expression vector lambda gt11. Recombinant phage (lambda gt11Sfl) expressing pWR110-encoded polypeptide antigens were identified by using rabbit antisera directed against S. flexneri M90T invasion plasmid antigens. Antigens encoded by lambda gt11Sfl recombinant phage were characterized by reacting affinity-purified antibodies, eluted from nitrocellulose-bound plaques of lambda gt11Sfl recombinants, with virulent, wild-type S. flexneri M90T polypeptides in Western blot analyses. lambda gt11Sfl clones directing the synthesis of complete, truncated, and beta-galactosidase fusion versions of three previously identified outer membrane polypeptides (57-, 43-, and 39-kilodalton [kDa] antigens) were isolated. A fourth polypeptide, similar in size to the 57-kDa antigen (ca. 58 kDa) but unrelated as determined by DNA homology and serological measurements, was also identified. Southern blot analysis of S. flexneri M90T invasion plasmid DNA hybridized with lambda gt11Sfl insert DNA probes was used to construct a map of invasion plasmid antigen genes (ipa) corresponding to the 57-kDa (ipaB), 43-kDa (ipaC), and 39-kDa (ipaD) polypeptides. Genes ipaB, ipaC and ipaD mapped to contiguous 4.6-kilobase (kb) and 1.0-kb HindIII fragments contained within a larger (23-kb) BamHI fragment. The ipaH gene, which encodes the synthesis of the 58-kDa polypeptide, did not map in or near the ipaBCD gene cluster, suggesting a distinct location of ipaH on the invasion plasmid.  相似文献   

18.
Replication region of bacteriophage lambda DNA was cloned into pBR322 plasmid by the use of two restriction enzymes--PstI and HindIII. The restriction analysis of four obtained plasmids revealed that lambda DNA was cloned in both orientations. Recombinant plasmids were transferred to the minicell-producing strain of E. coli and synthesis of the plasmid-mediated proteins was analysed by polyacrylamide-gel electrophoresis. All four recombinant plasmids produced lambda DNA replication proteins pO and pP as well as some proteins specific for pBR322. The orientation of cloned fragment did not affect the synthesis of lambda DNA replication proteins.  相似文献   

19.
The plasmids pSC138 and pML31 each contain the EcoRI-generated f5 replicator fragment of the conjugative plasmid F in addition to an EcoRI fragment encoding antibiotic resistance: ampicillin resistance derived from Staphylococcus aureus in pSC138 and kanamycin resistance from Escherichia coli in pML31. We have mapped one HindIII and two BamHI restriction sites in the f5 region of these plasmids and one HindIII site in the antibiotic resistance region of each plasmid. The HindIII site in the Km region of pML31 occurs in the kan gene whereas the HindIII site in the Ap region of pSC138 appears to occur in an area important for the regulation of beta-lactamase production. By means of in vitro recombinant DNA manipulation of plasmids pML31 and pSC138, we have shown that approximately 1.9 X 10(6) daltons of the 6.0 X 10(6) dalton f5 fragment can be deleted without disrupting plasmid stability. In addition, we have used these same techniques to isolate a novel F-controlled Ap plasmid cloning vehicle which contains a single restriction site for each of the enzymes EcoRI, HindIII, and BamHI. This cloning vehicle has been linked via either its EcoRI or HindIII site to a ColE1 plasmid replicon to yield stable recombinants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号