首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium independent mutants of two Yersinia pestis strains were studied. Insertions of IS100 element at three different sites of plasmid pCad within calcium dependence region were detected in Y. pestis EV, as well as two extensive deletions covering the whole region. It was shown that IS100 carries no HindIII sites. Novel IS element of Y. pestis designated IS101 was discovered in strain 358, in addition to IS100. It is distinguished by a slightly smaller size, HindIII site presence and high specificity of integration.  相似文献   

2.
The pesticinogenicity 9.5 kb plasmid from Yersinia pestis strain EV76 has been marked by the kanamycin phosphotransferase gene inserted into PstI site and designated pP3. The obtained plasmid pP3 determines the synthesis of 45 kd pesticin, alpha and beta-forms of fibrinolysin coagulase (37 and 35 kd) and the 29, 19 and 13 kd proteins in Escherichia coli mini cells. When transferred into Yersinia pseudotuberculosis strain 6933 the plasmid causes the proteolysis of outer membrane proteins. The 150 kd protein is reduced to 138 kd, the 48.5 kd protein is reduced to 45 kd. The proteins secreted into the cultural medium (51 and 38 kd) are also cleaved. The proteolysis of the 150 kd protein was found to occur at the stage of secretion via the inner membrane. The purified fibrinolysin coagulase from Escherichia coli strain JM83 harbouring the plasmid pP3 induces the proteolysis in vitro of the isolated membrane proteins from Yersinia pseudotuberculosis strain 6953 similar to the proteolysis registered in vivo.  相似文献   

3.

Background:

DNA vaccination with plasmid encoding bacterial, viral, and parasitic immunogens has been shown to be an attractive method to induce efficient immune responses. Bacteria of the genus Brucella are facultative intracellular pathogens for which new and efficient vaccines are needed.

Methods:

To evaluate the use of a DNA immunization strategy for protection against brucellosis, a plasmid containing the DNA encoding the Brucella melitensis (B. melitensis) 31 kDa outer membrane protein, as a potent immunogenic target, was constructed.

Results:

The constructed plasmid, pcDNA3.1+omp31, was injected intramuscularly into mice and the expression of omp31 RNA was assessed by RT-PCR. The integrity of the pcDNA3.1+omp31 construct was confirmed with restriction analysis and sequencing. Omp31 mRNA expression was verified by RT-PCR.

Conclusion:

Our results indicate that the pcDNA3.1+omp31 eukaryotic expression vector expresses omp31 mRNA and could be useful as a vaccine candidate.Key Words: Brucella melitensis, omp31, DNA Vaccine, pcDNA3.1  相似文献   

4.
A set of isogenic derivatives of Yersinia pestis EV strain was obtained including the variants harbouring the different compositions of Yersinia own plasmids. The protein profiles of outer membranes of the set of strains were defined. The polyacrylamide gel electrophoresis has shown the small 6.1 Md plasmid to code an outer membrane protein with mol mass 29 kDa, different from pesticin I, while the heavy 60.0 Md plasmid encodes the 15-16 kDa polypeptide different from monomers of F1 and T-antigens of plague microbe.  相似文献   

5.
On the basis of Yersinia pseudotuberculosis strain YPIII the isogenic variants containing the different combinations of 47 Md plasmids from Yersinia pestis or Yersinia pseudotuberculosis cells with the 6 Md pYP plasmid from Yersinia pestis EV (intact or having impaired the pla gene determining the synthesis of plasmocoagulase). The degradation of the secreted proteins encoded by the 47 Md plasmids of Yersinia pestis and Yersinia pseudotuberculosis in the cells harbouring the 6Md pYP plasmid has been registered. Yersinia pseudotuberculosis strain YPIII carrying its own 47Md and pYP plasmids also contained no YOP1 protein, in contract to the parent strain. The damage of the pla gene eliminated the destructive effect on the outer membrane proteins. Imposition of the 47Md and 6Md plasmids from Yersinia pestis in Yersinia pseudotuberculosis cells may be used for obtaining and study of the physiological role of low molecular mass proteins resulting from proteolysis of proteins encoded by the 47Md virulence plasmid of Yersinia.  相似文献   

6.
The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.  相似文献   

7.
8.
9.
YscD is an essential component of the plasmid pCD1-encoded type III secretion system (T3SS) of Yersinia pestis. YscD has a single transmembrane (TM) domain that connects a small N-terminal cytoplasmic region (residues 1 to 121) to a larger periplasmic region (residues 143 to 419). Deletion analyses established that both the N-terminal cytoplasmic region and the C-terminal periplasmic region are required for YscD function. Smaller targeted deletions demonstrated that a predicted cytoplasmic forkhead-associated (FHA) domain is also required to assemble a functional T3SS; in contrast, a predicted periplasmic phospholipid binding (BON) domain and a putative periplasmic "ring-building motif" domain of YscD could be deleted with no significant effect on the T3S process. Although deletion of the putative "ring-building motif" domain did not disrupt T3S activity per se, the calcium-dependent regulation of the T3S apparatus was affected. The extreme C-terminal region of YscD (residues 354 to 419) was essential for secretion activity and had a strong dominant-negative effect on the T3S process when exported to the periplasm of the wild-type parent strain. Coimmunoprecipitation studies demonstrated that this region of YscD mediates the interaction of YscD with the outer membrane YscC secretin complex. Finally, replacement of the YscD TM domain with a TM domain of dissimilar sequence had no effect on the T3S process, indicating that the TM domain has no sequence-specific function in the assembly or function of the T3SS.  相似文献   

10.
The type III secretion system (YscC) protein of Yersinia pestis plays an essential role in the translocation of Yersinia outer proteins (Yops) into eukaryotic target cells through a type III secretion mechanism. To assess the immunogenicity and potential protective efficacy of YscC against lethal plague challenge, we cloned, overexpressed, and purified YscC using two different bacterial expression and purification systems. The resulting expression plasmids for YscC, pETBlue-2-YscC and pTYB11-YscC, were regulated by robust T7 promoters that were induced with isopropyl-beta-D-thiogalactopyranoside. The intein-fusion pTYB11-YscC system and the six-histidine-tagging pETBlue-2-YscC system were both successful for producing and purifying YscC. The intein-mediated purification system produced about 1mg of soluble YscC per liter of bacterial culture while the YscC-His(6)-tag method resulted in 16mg of insoluble YscC per liter of bacterial culture. Protein identity for purified YscC-His(6) was confirmed by ion trap mass spectrometry. Antisera were produced against both YscC and YscC-His(6). The specific immune response generated in YscC-vaccinated mice was relative to the particular purified protein, YscC or YscC-His(6), which was used for vaccination as determined by Western blot analysis and ELISA. Regardless of the purification method, either form of the YscC protein failed to elicit a protective immune response against lethal plague challenge with either F1 capsule forming Y. pestis CO92 or the isogenic F1(-)Y. pestis C12.  相似文献   

11.
The genetical libraries of the pFra plasmid of Yersinia pestis genes were obtained by insertion into the PstI, SalGI, EcoRI, XhoI restriction sites of the cosmid vector pHC79. The immunochemical analysis of the recombinant clones has revealed the clones synthesizing the antigen Fl (fraction I) and mouse toxin (Ymt--Yersinia pestis murine toxin). The restriction analysis of the plasmids from antigen synthesizing clones has permitted to construct the detailed physical map of the fra-ymt region of the pFra plasmid the size of 22 kb. The recombinant F1 positive clones of Escherichia coli are able to form at 37 degrees C the capsule-like structure peculiar for Yersinia pestis. The antigen F1 and the mouse toxin were isolated, purified and characterized. The antigen F1 is an 1-2 Md polymer containing a 16 kDa protein subunit. The mouse toxin a 240 kDa protein consisting of 61 kDa subunits. The nucleotide sequence of ymt gene has been defined.  相似文献   

12.
The Yersinia pestis outer membrane porin F (OmpF) is a transmembrane protein located in the outer membrane of this Gram-negative bacterium which is the causative agent of plague, where it plays a significant role in controlling the selective permeability of the membrane. The amino acid sequences of OmpF proteins from 48 Y. pestis strains representing all currently available phylogenetic groups of this Gram-negative bacterium were recently deduced. Comparison of these amino acid sequences revealed that the OmpF can be present in four isoforms, the pestis-pestis type, and the pestis-microtus types I, II, and III. OmpF of the most recent pestis-pestis type has an alanine residue at the position 148, where all the pestis-microtus types have threonine there (T148A polymorphism). The variability of different pestis-microtus types is caused by an additional polymorphism at the 193rd position, where the OmpFs of the pestis-microtus type II and type III have isoleucine-glycine (IG+193) or isoleucine-glycine-isoleucine-glycine (IGIG+193) insertions, respectively (IG+193 and IGIG+193 polymorphism). To investigate potential effects of these sequence polymorphisms on the structural properties of the OmpF protein, we conducted multi-level computational analysis of its isoforms. Analysis of the I-TASSER-generated 3D-models revealed that the Yersinia OmpF is very similar to other non-specific enterobacterial porins. The T148A polymorphism affected a loop located in the external vestibule of the OmpF channel, whereas IG+193 and IGIG+193 polymorphisms affected one of its β-strands. Our analysis also suggested that polymorphism has moderate effect on the predicted local intrinsic disorder predisposition of OmpF, but might have some functional implementations.  相似文献   

13.
14.
Serratia marcescens outer membrane contains three different general diffusion porins: Omp1, Omp2 and Omp3. Omp1 was cloned and sequenced and it shows a great homology to the family of outer membrane porins that comprises the general porins of enteric bacteria. The gene for Omp1 was transferred into an expression plasmid and was expressed in Escherichia coli UH302 (E. coli UH302 pOM100), a porin deficient strain. Its expression confers a higher susceptibility towards different antibiotics to this strain. Omp1 was purified to homogeneity from outer membrane of E. coli UH302 pOM100. Reconstitution of the purified protein into black lipid bilayers demonstrated that it is a channel-forming component with a single-channel conductance of approximately 2 nS in 1 M KCl similar to that of other porins from enteric bacteria. Omp1 is slightly cation-selective. Its homology to already crystallised members of the family of enteric porins whose three-dimensional-structures are known and allowed the design of a topology model for Omp1. The charge distribution within a porin monomer is similar as in other general diffusion pores. The positively charged amino acids localised at the beta-strands opposite the external loop L3, which restrict the pore diameter in the porin monomer.  相似文献   

15.
The outer membranes of gram-negative bacteria are considered to be of importance in host-bacteria interaction, in protective immunity, and occasionally in subclassification within a species. In this study, the outer membranes of several strains of Yersinia enterocolitica and Y. pseudotuberculosis were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). It was found that the appearance of the major proteins depended on the temperature at which they were solubilized in SDS. A protein was identified with the use of two-dimensional gels and preparative SDS-PAGE, which was equivalent to the "heat-modifiable protein" (protein II) of other Enterobacteriaceae species. A monoclonal antibody, 4G1, was generated against an isolated preparation of this Y. enterocolitica protein. This antibody was tested with whole cell bacterial antigens of 46 individual bacterial strains. The reactive strains included only Y. enterocolitica and Y. pseudotuberculosis. In addition, the reactivity of the 4G1 monoclonal antibody preparation could be absorbed only with Y. enterocolitica and Y. pseudotuberculosis, and not with other strains of bacteria. The reactivity of this 4G1 monoclonal antibody was also tested by the Western Blot technique. Six individual strains were tested: a Y. enterocolitica serotype 0:3, a Y. enterocolitica serotype 0:9, an Escherichia coli, a Salmonella typhimurium, a Shigella flexneri, and a Klebsiella pneumoniae. The 4G1 antibody reacted with only the proteins of the two Y. enterocolitica strains. In conclusion, the equivalent of the heat-modifiable protein was present in Y. enterocolitica and Y. pseudotuberculosis. Moreover, this protein also carried a species-specific antigenic determinant.  相似文献   

16.
Antigens coded by the Ca2(+)-dependance plasmid were found in the cultural medium, cytoplasm and outer membranes of the three monoplasmid (pCadV) strains of Yersinia pestis with the different basic properties. The presence of 20 mM of Mg2+ at least in the medium is necessary for optimal expression of these proteins. The existence of strain differences in the bacterial cells reaction to temperature, cultivation medium has been demonstrated. No difference in the pCad-dependent proteins was found in Yersinia pestis and the causative agents of pseudotuberculosis, enterocolitis.  相似文献   

17.
肺炎嗜衣原体主要外膜蛋白是其特征抗原之一。实验中通过PCR方法从肺炎嗜衣原体基因组中扩增主要外膜蛋白基因,插入pET32a(+)表达载体,转化BL21(DE3)感受态细胞,得到表达56kD融合蛋白的工程菌株。该菌株的表达量可达53%,提纯后的主要外膜蛋白纯度可达90%以上,在Western Blotting试验和胶体金免疫层析试验中显示了良好的抗原性。  相似文献   

18.
To identify the outer membrane protein component of the Caulobacter crescentus CB2 surface-layer export machinery we used the Serratia marcescens LipD protein to find homologs in the CB2 genome. From two homologous sequences found, one encodes a putative OMP with a predicted molecular mass of 57.5 kDa, termed Omp58 (formerly RsaF). Comparison of membrane protein profiles revealed a protein with an appropriate molecular mass present in wild-type, but not CB2 omp58::kanamycin, a mutant strain with an inactivated omp58 gene. Disruption of omp58 did not affect surface-layer production, suggesting that Omp58 is not involved in surface-layer protein secretion and, thus, may not be the outer membrane protein component of the C. crescentus surface-layer export system.  相似文献   

19.
An increase in the apparent molecular weight of the principal outer membrane protein (POMP) of Neisseria gonorrhoeae is associated with introduction of the penB2 genetic marker, which results in low-level, relatively nonspecific antibiotic resistance. Limited proteolysis of the two forms of POMP showed that they had few if any peptides in common. The nonspecific antibiotic resistance of penB2 was separated from the change in POMP by genetic transformation and by isolation of spontaneous penB mutants that showed no change in POMP. The genetic locus involved in the change from one POMP to another, which we have designated nmp-1, is closely linked to, but not identical with, penB2.  相似文献   

20.
Expression of mutant ompA genes, encoding the 325 residue Escherichia coli outer membrane protein OmpA, caused an inhibition of synthesis of the structurally unrelated outer membrane porins OmpC and OmpF and of wild-type OmpA, but not of the periplasmic beta-lactamase. There was no accumulation of precursors of the target proteins and the inhibitory mechanism operated at the level of translation. So far only alterations around residue 45 of OmpA have been found to affect this phenomenon. Linkers were inserted between the codons for residues 45 and 46. A correlation between size and sequence of the resulting proteins and presence or absence of the inhibitory effect was not found, indicating that the added residues acted indirectly by altering the conformation of other parts of the mutant OmpA. To be effective, the altered polypeptides had to be channelled into the export pathway. Internal deletions in effector proteins, preventing incorporation into the membrane, abolished effector activity. The results suggest the existence of a periplasmic component that binds to OmpA prior to membrane assembly; impaired release of this factor from mutant OmpA proteins may trigger inhibition of translation. The factor could be a See B-type protein, keeping outer membrane proteins in a form compatible with membrane assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号