首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1,25(OH)2D3 is an antiproliferative agent that may inhibit proliferation of breast cancer (BC) cells in vitro and BC development in animals. Epidemiological studies have shown a high incidence of BC in people less exposed to solar rays. To unravel the role of Vitamin D3 in BC patients, we have investigated serum levels of 25(OH)D3 and its active form 1,25(OH)2D3 as well as tissue expression of 1alpha-hydroxylase, 24-hydroxylase, and Vitamin D-receptor (VDR), determined by semiquantitative RT-PCR, in 88 Brazilian BC patients and 35 women without cancer (submitted to mammoplasties or resection of benign lesions). Median age of women with and without cancer was 51 and 46 years, respectively, and the majority of BC patients were classified as clinical stage II (67%). Although no differences in 25(OH)D3 serum concentration were found, 1,25(OH)2D3 (40+/-21 pg/ml) levels in BC patients were lower than in women without cancer (53+/-23). Our results indicate that 24-hydroxylase, VDR and 1alpha-hydroxylase mRNA tissue expression is similar in both groups and no correlation between 24-hydroxylase, 1alpha-hydroxylase, and VDR expression in breast tumors was found. A low 1,25(OH)2D3 serum concentration seems to be associated to breast cancer, however, the mechanism involved in this regulation is still unclear.  相似文献   

2.
3.
Effect of 1,25(OH)2D3 on bone morphogenetic protein-3 mRNA expression   总被引:1,自引:0,他引:1  
Bone morphogenetic proteins (BMPs) are members to the transforming growth factor-beta superfamily. They induce ectopic bone formation in rat and are pleiotropic initiators of inducible osteogenic precursor cells. A lot of reports have studied the presence of BMPs and their effects on bone marker expression in many different cell lines, however none describe the regulation of BMP3 by different factors and expression conditions. When a human bone marrow stromal cell (HBMSC) culture was treated simultaneously with 1,25(OH)2D3 (10(-8) M) and BMP3 (2.5 ng/ml), the total osteocalcin content in the cell layer and in the culture medium was higher than when the culture was treated with either factor alone (162%). To elucidate this synergistic activity, Northern blot analysis was done to study the effect of 1,25(OH)2D3 on BMP3 mRNA expression. Several human cell lines (MNNG, U-2OS, MG-63, KHOS, TE85, HOS) and HBMSC were treated by 1,25(OH)2D3 (10(-8) M for 24 h). Purified mRNA from treated and untreated cells were denatured using glyoxal and dimethylsulfoxide, and were fractionated on a 1% agarose gel. After electrophoresis, RNA were blotted onto a nylon membrane and incubated with 32P-labeled BMP3 and GAPDH riboprobes. Northern blot analysis revealed that, the BMP3 mRNA level was increased in a few cell lines (MG-63, HBMSC, HOS) after the addition of 1,25(OH)2D3 when compared to the untreated cells (127%+/-1; 130.5%+/-19.5; 207%+/-14). An higher stimulation was observed in HBMSC primary culture when compared to differentiated HBMSC. In view of these results, we now investigate the following hypothesis: does the BMP3 promoter exhibit the vitamin D receptor response like the osteocalcin gene?  相似文献   

4.
1,25-二羟维生素D3的生物学效应   总被引:2,自引:0,他引:2  
1,25-二羟维生素D3是维生素D3的活性形式,其生物学效应是由基因组与非基因组两种机制介导的。维生素D3除了具有钙磷代谢调节作用外,还具有其他更为广泛的生物学效应。1,25-二羟维生素D3能够抑制多种类型细胞的增殖,诱导细胞的凋亡和分化,调节机体免疫系统功能,保护中枢神经系统,以及保护基因等。  相似文献   

5.
An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2D by 1α‐hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2D3. We show that myoblasts not only responded to 1,25(OH)2D3, but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α‐hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2D3. J. Cell. Physiol. 231: 2517–2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

6.
The aim of this work was to evaluate the effects of 24,25-dihydroxyvitamin D3, 24,25(OH)2D3, on alkaline phosphatase (AP) and tartrate-resistant acid phosphatase (TRAP) activities in fetal rat calvaria cultures. These actions were compared with those of 1,25-dihydroxyvitamin D3, 1,25(OH)2D3, and 25-hydroxyvitamin D3, 25(OH)D3, in similar experimental conditions. At 10 min, 30 min and at 24 h incubation time, 1,25(OH)2D3 (10(-10)M) and 25(OH)D3 (10(-7) M) produced a significant increase in AP and TRAP activities compared to control group (without vitamin D metabolites). However, 24,25(OH)2D3 (10(-7) M) only produced effects on phosphatase activities similar to those produced by 1,25(OH)2D3 and 25(OH)D3, after 24 h incubation time. These findings suggest that 1,25(OH)2D3 and 25(OH)2D3 could carry out actions in minutes (nongenomic mechanism), while 24,25(OH)2D3 needs longer periods of time to perform its biological actions (genomic mechanism).  相似文献   

7.
A chemotherapeutic vitamin D analogue, EB1089, kills tumor cells via a caspase-independent pathway that results in chromatin condensation and DNA fragmentation. Employing transmission- and immunoelectronmicroscopy as well as detection of autophagosome-associated LC3-beta protein in the vacuolar structures, we show here that EB1089 also induces massive autophagy in MCF-7 cells. Interestingly, inhibition of autophagy effectively hindered apoptosis-like nuclear changes and cell death in response to EB1089. Furthermore, restoration of normal levels of beclin 1, an autophagy-inducing tumor suppressor gene that is monoallelically deleted in MCF-7 cells, greatly enhanced the EB1089-induced nuclear changes and cell death. Thus, EB1089 triggers nuclear apoptosis via a pathway involving Beclin 1-dependent autophagy. Surprisingly, tumor cells depleted for Beclin 1 failed to proliferate suggesting that even though the monoallelic depletion of beclin 1 in human cancer cells suppresses EB1089-induced autophagic death, one intact beclin 1 allele is essential for tumor cell proliferation.  相似文献   

8.
Vitamin D receptor (VDR) and 25-hydroxyvitamin D3 1-alpha-hydroxylase expression have recently been shown to be upregulated in several tumors and thought to represent an important endogenous response to tumor progression. Little is known about the expression of these proteins in thyroid carcinoma, although previous reports have documented evidence of the biological effect of vitamin D in thyroid cells. Using paraffin-embedded and frozen sections of papillary thyroid carcinoma, we utilized real-time quantitative RT-PCR and immunohistochemistry to characterize the expression of VDR and 1-alpha-hydroxylase in thyroid follicular cells, with special emphasis on papillary thyroid carcinoma (PTC). VDR and 1-alpha-hydroxylase expression were increased in PTC compared with normal thyroid tissue and especially high in areas of lymphocyte infiltration. Expression of VDR and 1-alpha-hydroxylase in PTC may be compatible with an overall favorable prognosis for this tumor type and may constitute important prerequisites for using vitamin D and/or vitamin D analogs in the treatment of PTC.  相似文献   

9.
The steroid hormone 1,25(OH)2-vitamin D3 [1,25D] has been shown to affect the growth and proliferation of primary cultures of ventricular myocytes isolated from neonatal rat hearts. The research presented here shows that the vitamin D receptor [VDR] is present in murine cardiac myocytes (HL-1 cells), and that 1,25D affects the growth, proliferation and morphology of these cells. In addition we show that 1,25D effects expression of ANP, myotrophin, and c-myc. Furthermore, 1,25D effects expression and localization of the VDR within the cell. Murine HL-1 cardiac myocytes were grown and treated with 1,25D in culture, and growth and morphology were assessed with microscopic analysis. Cells were counted and protein levels were evaluated through Western blot analysis. Subcellular localization of the VDR was determined using immunofluorescence and confocal microscopy. 1,25D was found to decrease proliferation and alter cellular morphology of the HL-1 cells. Treatment with 1,25D increased expression of myotrophin while decreasing expression of atrial natriuretic peptide [ANP] and c-myc. 1,25D treatment also increased expression and nuclear localization of the VDR in these cardiac myocytes. Thus 1,25D is an important hormone involved in modulating and maintaining heart cell structure and function.  相似文献   

10.
11.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

12.
13.
Growth of Caco-2 and many cancer cells is inhibited by 1,25(OH)(2)D(3). Whereas TGF-beta 1 inhibits normal colonic epithelial cell growth, most human colon cancer-derived cells, including Caco-2 and SW480 cells, are resistant to it. The mechanisms underlying these antiproliferative actions and resistance to TGF-beta growth inhibition are largely unknown. We observed that 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] sensitized Caco-2 and SW480 cells to TGF-beta 1 growth inhibitory effects. Versus 1,25(OH)(2)D(3) alone, the combination of 1,25(OH)(2)D(3) and TGF-beta 1 significantly reduced cell numbers. Also, the amount of active TGF-beta 1 was increased (~4-fold) by this secosteroid in conditioned media from Caco-2 cells. The 1,25(OH)(2)D(3) increased the expression of IGF-II receptors (IGF-IIR), which facilitated activation of latent TGF-beta 1, and was found to activate TGF-beta signaling in Caco-2 cells. By using neutralizing antibodies to human TGF-beta 1, we showed that this cytokine contributes to secosteroid-induced inhibition of Caco-2 cell growth. Also, 1,25(OH)(2)D(3) was found to enhance the type I TGF-beta receptor mRNA and protein abundance in Caco-2 cells. Whereas the 1,25(OH)(2)D(3)-induced sensitization of Caco-2 cells to TGF-beta 1 was IGF-IIR independent, the type I TGF-beta 1 receptor was required for this sensitization. Thus 1,25(OH)(2)D(3) treatment of Caco-2 cells results in activation of latent TGF-beta 1, facilitated by the enhanced expression of IGF-IIR by this secosteroid. Also, 1,25(OH)(2)D(3) sensitized Caco-2 cells to growth inhibitory effects of TGF-beta 1, contributing to the inhibition of Caco-2 cell growth by this secosteroid.  相似文献   

14.
In vitro, activation of the cAMP signalling pathway stimulates, whereas activation of PKC inhibits, 1,25(OH)2D3 synthesis. Since PTH activates both pathways, the ultimate effect of PTH on 1 alpha-hydroxylation in vivo likely depends on other endocrine-autocrine factors that impinge onto these signal transduction cascades. For example, 1,25(OH)2D3, a known repressor of 1 alpha-hydroxylation, may increase renal PKC amount-activity, thereby enhancing the inhibitory arm and preventing PTH stimulation of the 1-OHASE. In contrast, studies with diabetic rats suggest that insulin may allow cAMP-mediated stimulation to override PKC-mediated inhibition of 1-OHASE activity. Analogous to models proposed for regulation of adrenal steroid hydroxylases, it is likely that regulation of renal vitamin D hydroxylation involves both acute (reversible phosphorylation) and chronic (modulation of gene expression) mechanisms. However, the molecular details of these regulatory mechanisms remain to be resolved.  相似文献   

15.
Summary After injection of radiolabeled 1,25 (OH)2 vitamin D3, nuclear concentration of radioactivity is observed in parenchymal cells of the parathyroid gland in pregnant, adult male, and 10-day male neonatal rats. In competition studies with unlabeled 1,25 (OH)2 vitamin D3, but not with 25 (OH) vitamin D3, nuclear uptake is prevented. Experiments with 3H 25 (OH) vitamin D3, in contrast to 3H 1,25 (OH)2 vitamin D3, do not show nuclear concentration in cells of the parathyroid. The results of the autoradiographic studies suggest the presence of receptors for a direct effect of 1,25 (OH)2 vitamin D3 on the parathyroid gland for modulation of parathyroid hormone secretion.  相似文献   

16.
Vitamin D metabolites 1alpha,25(OH)(2)D(3) and 24R,25(OH)(2)D(3) regulate endochondral ossification in a cell maturation-dependent manner via membrane-mediated mechanisms. 24R,25(OH)(2)D(3) stimulates PKC activity in chondrocytes from the growth plate resting zone, whereas 1alpha,25(OH)(2)D(3) stimulates PKC in growth zone chondrocytes. We used the rat costochondral growth plate cartilage cell model to study how these responses are differentially regulated. 1alpha,25(OH)(2)D(3) acts on PKC, MAP kinase, and downstream physiological responses via phosphatidylinositol-specific PLC-beta; 24R,25(OH)(2)D(3) acts via PLD. In both cases, diacylglycerol (DAG) is increased, activating PKC. Both cell types possess membrane and nuclear receptors for 1alpha,25(OH)(2)D(3), but the mechanisms that render the 1alpha,25(OH)(2)D(3) pathway silent in resting zone cells or the 24R,25(OH)(2)D(3) pathway silent in growth zone cells are unclear. PLA(2) is pivotal in this process. 1alpha,25(OH)(2)D(3) stimulates PLA(2) activity in growth zone cells and 24R,25(OH)(2)D(3) inhibits PLA(2) activity in resting zone cells. Both processes result in PKC activation. To understand how negative regulation of PLA(2) results in increased PKC activity in resting zone cells, we used PLA(2) activating peptide to stimulate PLA(2) activity and examined cell response. PLAP is not expressed in resting zone cells in vivo, supporting the hypothesis that PLA(2) activation is inhibitory to 24R,25(OH)(2)D(3) action in these cells.  相似文献   

17.
The endocrine feedback loop between vitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH‐related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10?8 M 1,25(OH)2D3 or PTHrP, Col2‐pd2EGFP transgenic mice, and primary Col2‐pd2EGFP growth plate chondrocytes isolated by FACS, using RT‐qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1α‐ and 24‐hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration. J. Cell. Physiol. 229: 1999–2014, 2014. © 2014 Wiley Periodicals, Inc.
  相似文献   

18.
A hapten derivative of EB1089 [1(R),3(S),25-trihydroxy-26,27-dimethyl-9,10-seco-24-homocholesta-5(Z),7(E),10(19),22(E),24(E)-pentaene], a side-chain analog of 1alpha,25-dihydroxyvitamin D(3), was synthesized for raising antibodies with a high specificity for EB1089. The A-ring moiety of EB1089 was replaced in the hapten by a linker for conjugation to a protein. Three polyclonal antibodies were obtained by immunizing rabbits with a BSA-conjugate of the hapten. The antibodies were characterized for titer, avidity and specificity using an enzyme immunoassay with covalently bound EB1089. The three antibodies had similar binding profiles and were highly selective for EB1089 and its metabolites over the naturally occurring vitamin D metabolites. Cross-reactivities with 25-hydroxyvitamin D(3), the most abundant vitamin D metabolite in serum, were in the range 0.01-0.2% relative to EB1089.  相似文献   

19.
Human colon carcinoma cells express 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1) and thus produce the vitamin D receptor (VDR) ligand 1alpha,25-dihydroxyvitamin D(3) (1,25-D3), which can be metabolized by 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24). Expression of VDR, CYP27B1, and CYP24 determines the efficacy of the antimitotic action of 1,25-D3 and is distinctly related to the degree of differentiation of cancerous lesions. In the present study we addressed the question of whether the effects of epidermal growth factor (EGF) and of 1,25-D3 on VDR, CYP27B1, and CYP24 gene expression in human colon carcinoma cell lines also depend on the degree of cellular differentiation. We were able to show that slowly dividing, highly differentiated Caco-2/15 cells responded in a dose-dependent manner to both EGF and 1,25-D3 by up-regulation of VDR and CYP27B1 expression, whereas in highly proliferative, less differentiated cell lines, such as Caco-2/AQ and COGA-1A and -1E, negative regulation was observed. CYP24 mRNA was inducible in all clones by 1,25-D3 but not by EGF. From the observed clonal differences in the regulatory effects of EGF and 1,25-D3 on VDR and CYP27B1 gene expression we suggest that VDR-mediated growth inhibition by 1,25-D3 would be efficient only in highly differentiated carcinomas even when under mitogenic stimulation by EGF.  相似文献   

20.
Homologous up-regulation of the 1,25 (OH)2 vitamin D3 receptor in rats   总被引:6,自引:0,他引:6  
This study investigates the ability of vitamin D-metabolites to regulate 1,25(OH)2D3 receptors in vivo. Rats made vitamin D-deficient were treated with 1,25(OH)2D3 or vehicle for 1-5 days. In treated animals, receptors for 1,25(OH)2D3 in kidney increased dramatically compared with control levels. An increase in specific binding to 220% of control was seen after 2 doses of hormone, which reached to 336% after 5 days of treatment. Intestinal receptors increased to only 130% of control levels after 5 days of treatment. In vitamin D-replete animals, the difference between control and treated groups was slightly greater when endogenously occupied sites were measured by exchange (TPCK). However, significant changes were observed only after 4 days of hormone treatment. The data indicate that homologous up-regulation of the 1,25(OH)2D3 receptor occurs in vivo. The difference in response in kidney and in intestine suggests differential importance of up-regulation in various organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号