首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Adenyl cyclase activity in mucous acinar cells and serous demilune cells of the rat sublingual gland was localized cytochemically. After incubation with adenylyl-imidodiphosphate (AMP-PNP) as substrate, deposits of reaction product are found along the cell membranes bordering the secretory surfaces of serous demilune cells. These are the membranes which participate directly in secretion by fusing with the granule membranes. The granule membranes of the demilune cells do not reveal reaction product, but the membranes of the granules which are fused with and become part of the cell membrane do show deposits. Thus, it appears that the cell membranes which fuse with granule membranes during secretion are associated with a high level of adenyl cyclase activity. In support of this, the luminal membranes of the mucous acinar cells which do not fuse with granule membranes during secretion are not associated with detectable amounts of adenyl cyclase activity.  相似文献   

2.
Light-microscopy showed parotid serous acinar cells to contain neutral mucin, serous and mucous acinar cells of submandibular gland and intercalary ductal cells of both glands to contain acid and neutral mucins, and cells of striated ducts and excretory ducts to contain neutral mucin. Mucins were demonstrated ultrastructurally in a portion of the components of secretory granules of acinar cells and intercalary ductal cells, and in secretory granules of striated and excretory ductal cells. The mucins were all stained by techniques that reveal 1,2-glycols. Secretory granules of submandibular mucous and serous acinar cells and intercalary ductal cells were stained variably by the low iron-diamine technique for acid mucin, and those of mucous acinar cells by the high iron-diamine technique for sulphomucins mucin and possibly consisted of protein. The results suggest that one type of cell may be able to produce a range of secretory products and to package them variously into secretory granules.  相似文献   

3.
Histology and mucosubstance histochemistry of ferret lingual glands.   总被引:1,自引:0,他引:1  
S Poddar  S Jacob 《Acta anatomica》1979,105(1):65-74
The histology and mucosubstance histochemistry of the ferret lingual glands were studied. Both serous and mucous minor salivary glands were present in the posterior part of the tongue. In serous glands, acinar cells and a very few cells of the excretory ducts contained granules which gave reactions for neutral mucopolysaccharides only. The mucous glands, including the duct system, contained mainly weakly sulphated acidic mucin, some neutral mucin but no carboxylated mucin. Occasional goblet cells were present in the excretory ducts of both serous and mucous glands. They contained weakly sulphated mucin.  相似文献   

4.
In the perinatal submandibular gland, the secretion granules of Type I cells contain protein C (89 KD) and those of Type III cells have Bl-immunoreactive proteins (Bl-IP, 23.5-27.5 KD). In this report we used immunocytochemistry at the light and electron microscopic levels to describe the developmental distribution and localization of protein D (175 KD), which is secreted by both Type I and Type III cells. At its first appearance in Type I cells at 18 days and in Type III cells at 19 days post conception, protein D immunoreactivity (D-IR) is associated with secretion granule membranes; this is more pronounced in Type I than in Type III cells. In early postnatal life the label remains membrane associated, but as Type III cells differentiate into seromucous acinar cells, the lower level of label present in these cells is found in the granule content. Label is found associated with the membrane in secretion granules of Type I cells as long as these cells are identifiable in acini, and subsequent to this similarly labeled cells are seen in intercalated ducts. In the sublingual gland (SLG), D-IR is membrane associated in secretion granules of serous demilune cells, and is present in the secretion granule content in mucous acinar cells. D-IR is also found in the lingual serous (von Ebner's) glands, lacrimal gland, and tracheal glands, primarily in the ducts, where it is localized in the content of secretion granules.  相似文献   

5.
Although feline salivary glands have been used in investigations on secretion and microlithiasis and both processes involve calcium, nothing is known about its distribution in these glands. Therefore we have demonstrated the presence of calcium by a histochemical technique using glyoxal bis(2-hydroxyanil) and a biochemical technique using dry ashing. The histochemical technique stained serous acinar cells weakly and rarely found mucous acinar cells strongly in the parotid gland, mucous acinar cells moderately to strongly and serous acinar cells weakly in the sublingual gland, and central and demilunar acinar cells moderately to strongly in the submandibular gland. The biochemical technique revealed less calcium in the parotid than in the submandibular and sublingual glands. Both techniques revealed a decrease of calcium in submandibular and sublingual glands following parasympathetic stimulation. The histochemical distribution of calcium, which corresponds to that of acinar secretory glycoprotein, and the loss of calcium following parasympathetic stimulation, which causes release of secretory granules, indicate the presence of calcium in secretory granules. The concentration of calcium in the different types of acinar cell corresponds to the acidity of the secretory glycoprotein and suggests that calcium is present as a cationic shield to allow the condensation of polyionic glycoprotein in secretory granules.  相似文献   

6.
The present study was undertaken to localize adenylate cyclase activity in salivary glands by cytochemical means. For the study, serous parotid glands and mixed sublingual glands of the rat were used. Pieces of the fixed glands were incubated with adenosine triphosphate (ATP) or adenylyl-imidodi-phosphate (AMP-PNP) as substrate: inorganic pyrophosphate or PNP liberated upon the action of adenylate cyclase on the substrates is precipitated by lead ions at their sites of production. In both glands, the reaction product was detected along the myoepithelial cell membranes in contact with secretory cells, indicating that a high level of adenylate cyclase activity occurs in association with these cell membranes. The association with a high level of the enzyme activity might be related to the contractile nature of myoepithelial cells which are supposed to aid secretory cells in discharging secretion products. A high level of adenylate cyclase activity was also detected associated with serous secretory cells (acinar cells of the parotid gland and demilune cells of the sublingual gland), but not with mucous secretory cells. In serous cells, deposits of reaction product were localized along the extracellular space of the apical cell membrane bordering the lumen. This is the portion of the cell membrane which fuses with the granule membranes during secretion. Since the granule membranes are not associated with a detectable level of adenylate cyclase activity, it appears that the enzyme activity becomes activated or associated with the granule membranes as they become part of the cell membrane by fusion. The association with a high level of adenylate cyclase activity appears to be related to the ability of the membrane to fuse with other membranes. It is likely, since the luminal membrane of mucous cells which does not fuse with mucous granule membranes during secretion is not associated with a detectable enzyme activity.  相似文献   

7.
S Jacob  S Poddar 《Acta anatomica》1989,135(4):344-346
The sublingual glands of 2 male and 2 female adult ferrets were examined using electron microscopy. The secretory end piece consisted of mucous tubules, serous and mixed acini. The mucous cells showed two different types of granules. The serous cells contained electron-dense secretory granules. The duct system entirely comprised excretory ducts.  相似文献   

8.
An antiserum against purified rat parotid amylase was used to localize the protein in parotid glands of developing and adult rats. The unlabeled antibody peroxidase-antiperoxidase method and the protein A-gold colloid technique were used at the light and electron microscope levels, respectively. Immunoreactive amylase was detected in a few scattered cells in the glands of 2-day-old rats. During the following days the number of cells stained immunocytochemically for amylase increased rapidly; at 15 days of age all acinar cells revealed amylase, but the intensity of immunostaining varied from cell to cell. Electron microscopically, amylase was localized in the secretory granules, and by using a more concentrated antiserum, in the rough endoplasmic reticulum and Golgi complex. At early stages of development the acinar cells contained fewer and smaller secretory granules than in adult animals; the gold particles indicative of amylase were randomly distributed over the secretory granules. In the glands of adult rats, amylase was distributed inhomogeneously within the secretory granules. In the majority of secretory granules gold colloid particles were located over the electron-dense portions of the granules. However, secretory granules in which an amylase-rich shell surrounded an amylase-poor or amylase-negative "core" were not infrequent.  相似文献   

9.
The principal and accessory submandibular glands of the common vampire bat, Desmodus rotundus, were examined by electron microscopy. The secretory endpieces of the principal gland consist of serous tubules capped at their blind ends by mucous acini. The substructure of the mucous droplets and of the serous granules varies according to the mode of specimen preparation. With ferrocyanide-reduced osmium postfixation, the mucous droplets are moderately dense and homogeneous; the serous granules often have a polygonal outline and their matrix shows clefts in which bundles of wavy filaments may be present. With conventional osmium postfixation, the mucous droplets have a finely fibrillogranular matrix; the serous granules are homogeneously dense. Mucous cells additionally contain many small, dense granules that may be small peroxisomes, as well as aggregates of 10-nm cytofilaments. Intercalated duct cells are relatively unspecialized. Striated ducts are characterized by highly folded basal membranes and vertically oriented mitochondria. Luminal surfaces of all of the secretory and duct cells have numerous microvilli, culminating in a brush borderlike affair in the striated ducts. The accessory gland has secretory endpieces consisting of mucous acini with small mucous demilunes. The acinar mucous droplets contain a large dense region; the lucent portion has punctate densities. Demilune mucous droplets lack a dense region and consist of a light matrix in which fine fibrillogranular material is suspended. A ring of junctional cells, identifiable by their complex secretory granules, separates the mucous acini from the intercalated ducts. The intercalated ducts lack specialized structure. Striated ducts resemble their counterparts in the principal gland. As in the principal gland, all luminal surfaces are covered by an array of microvilli. At least some of the features of the principal and accessory submandibular glands of the vampire bat may be structural adaptations to the exigencies posed by the exclusively sanguivorous diet of these animals and its attendant extremely high intake of sodium chloride.  相似文献   

10.
Salivary glands synthesize and secrete an unusual family of proline-rich proteins (PRPs) that can be broadly divided into acidic and basic PRPs. We studied the tissue-specific expression of these proteins in rabbits, using antibodies to rabbit acidic and basic PRPs as well as antibodies and cDNA probes to human PRPs. By immunoblotting, in vitro translation, and Northern blotting, basic PRPs could be readily detected in the parotid gland but were absent in other salivary glands. In contrast, synthesis in vitro of acidic PRPs was detected in parotid, sublingual, and submandibular glands. Ultrastructural localization with immunogold showed heavy labeling with antibodies to acidic PRPs of secretory granules of parotid acinar cells and sublingual serous demilune cells. Less intense labeling occurred in the seromucous acinar cells of the submandibular gland. With antibodies to basic PRPs, the labeling of the parotid gland was similar to that observed with antibodies to acidic PRPs, but there was only weak labeling of granules of a few sublingual demilune cells, and no labeling of the submandibular gland. These results demonstrate a variable pattern of distribution of acidic and basic PRPs in rabbit salivary glands. These animals are therefore well suited for study of differential tissue expression of PRPs.  相似文献   

11.
Ten pancreatic secretory proteins have been demonstrated in differentiated pancreatic acinar carcinoma cells by the protein A-gold immunocytochemical approach. The high resolution of the technique has allowed for the localization of the different proteins in the cellular compartments involved in protein secretion: RER, Golgi and secretory granules. The quantitative evaluation of the labeling for amylase has demonstrated the presence of an increasing gradient in the intensity from the RER to the Golgi and to the secretory granules which may reflect the process of protein concentration along the secretory pathway. These results, together with those obtained using the pulse-labeling autoradiographic approach, demonstrate that differentiated acinar carcinoma cells are capable of processing secretory proteins. When intensities of labeling obtained for different proteins on acinar carcinoma cells were compared to those obtained on normal pancreatic acinar cells, major differences were observed for some proteins. In addition, studies performed on the pancreatic tissue of the tumor-bearing animals have shown the presence of morphological alterations in the acinar cells.  相似文献   

12.
Summary Actin and myosin were localized in various salivary glands (parotid, submandibular, sublingual, lingual and Harderian gland) and the exocrine pancreas of rats by indirect immunofluorescence microscopy using specific rabbit antibodies against chicken gizzard myosin and actin. A bright immunofluorescent staining with both antibodies was observed at three main sites: (1) In myoepithelial cells of all salivary glands, (2) in secretory gland cells underneath the cell membrane bordering the acinar lumen (except Harderian and mucous lingual gland), and (3) in epithelial cells of the various secretory ducts (of all glands) in similar distribution as in acinar cells. The present immunohistochemical findings in acinar cells could lend further support to a concept suggesting that myosin and actin are involved in the process of transport and exocytosis of secretory granules.Supported by grants form Deutsche Forschungsgemeinschaft (Dr. 91/1, Ste. 105/19 and U. 34/4). We thank Mrs. Ursula König, Mrs. Christine Mahlmeister and Miss Renate Steffens for excellent technical assistance.  相似文献   

13.
The pancreatic acinar carcinoma established in rat by Reddy and Rao (1977, Science 198:78-80) demonstrates heterogeneity of cytodifferentiation ranging from cells containing abundant well- developed secretory granules to those with virtually none. We examined the synthesis intracellular transport and storage of secretory proteins in secretory granule-enriched (GEF) and secretory granule-deficient (GDF) subpopulations of neoplastic acinar cells separable by Percoll gradient centrifugation, to determine the secretory process in cells with distinctly different cytodifferentiation. The cells pulse-labeled with [3H]leucine for 3 min and chase incubated for up to 4 h were analyzed by quantitative electron microscope autoradiography. In GEF neoplastic cells, the results of grain counts and relative grain density estimates establish that the label moves successively from rough endoplasmic reticulum (RER) leads to the Golgi apparatus leads to post-Golgi vesicles (vacuoles or immature granules) leads to mature secretory granules, in a manner reminiscent of the secretory process in normal pancreatic acinar cells. The presence of approximately 40% of the label in association with secretory granules at 4 h postpulse indicates that GEF neoplastic cells retain (acquire) the essential regulatory controls of the secretory process. In GDF neoplastic acinar cells the drainage of label from RER is slower, but the peak label of approximately 20% in the Golgi apparatus is reached relatively rapidly (10 min postpulse). The movement of label from the Golgi to the post- Golgi vesicles is evident; further delineation of the secretory process in GDF neoplastic cells, however, was not possible due to lack of secretory granule differentiation. The movement of label from RER leads to the Golgi apparatus leads to the post-Golgi vesicles suggests that GDF neoplastic cells also synthesize secretory proteins, but to a lesser extent than the GEF cells. The reason(s) for the inability of GDF cells to concentrate and store exportable proteins remain to be elucidated.  相似文献   

14.
Salivary carbonic anhydrase VI (CA VI) appears to contribute to taste function by protecting taste receptor cells (TRCs) from apoptosis. The serous von Ebner's glands locating in the posterior tongue deliver their saliva into the bottom of the trenches surrounding the TRC-rich circumvallate and foliate papillae. Because these glands deliver their saliva directly into the immediate vicinity of TRCs, we investigated whether CA VI is secreted by the von Ebner's glands, using immunochemical techniques. The immunohistochemical results showed that CA VI is present in the serous acinar cells, ductal cells, and ductal content of von Ebner's glands and in the demilune and ductal cells plus ductal content of rat lingual mucous glands. More importantly, CA VI was also detected in taste buds and in the taste pores. Western blotting of saliva collected from the orifices of human von Ebner's glands and CAs purified from rat von Ebner's glands confirmed that CA VI is expressed in these glands and secreted to the bottom of the trenches surrounding the circumvallate and foliate papillae. These findings are consistent with the hypothesis that locally secreted CA VI is implicated in the paracrine modulation of taste function and TRC apoptosis. (J Histochem Cytochem 49:657-662, 2001)  相似文献   

15.
Ultrastructural aspects of cat submandibular glands   总被引:3,自引:0,他引:3  
Submandibular glands of five adult female cats were examined by conventional electron microscopic techniques. All gland acini are mucous secreting and each acinus is capped with mucous secreting demilunar cells. Secretory product of demilunar cells is more electron lucent than that of acinar cells. The demilunes show intercellular tissue spaces and intercellular canaliculi whereas similar specializations are absent between acinar cells. Mitochondria and arrays of granular endoplasmic reticulum are more numerous in demilunar cells than in acinar cells. In acinar and demilunar cells secretory droplets first appear as enlarged Golgi saccules which subsequently become closely related to cisternae of the granular endoplasmic reticulum. Filamentous structures, interpreted as mucin molecules, are present in secretory droplets of acinar cells. Intercalated ducts are short, consisting of several junctional cells between acini and striated ducts. Striated ducts are long and tortuous and contain light cells, dark cells and basal cells. Light cells contain numerous membrane bound granules in their distal ends whereas dark cells show electron lucent vesicles in the same position. Basal cells contain a paucity of organelles and membrane plications but exhibit hemidesmosomes along their basal plasma membranes. Myoepithelial cells are abundant in relation to acinar and demilunar cells. Nerve terminals are present in some instances between acinar cells or between acinar and myoepithelial cells.  相似文献   

16.
Synopsis the structure and cytochemistry of GERL was studied in several different exocrine secretory cells, including the exorbital lacrimal gland, parotid, lingual serous (von Ebner's), submandibular, and sublingual salivary glands, and exocrine pancreas of the rat; the lacrimal, parotid and pancreas of the guinea-pig; and the lacrimal gland of the monkey. GERL was morphologically and cytochemically similar in all cell types studied. It was located in the inner Golgi region and consisted of cisternal and tubular portions. Immature secretory granules were in continuity with GERL through multiple tubular connections. Modified cisternae of endoplasmic reticulum, with ribosomes only on one surface, closely paralleled parts of GERL. GERL and immature granules were intensely reactive for acid phosphatase activity, while the inner Golgi saccules were reactive for thiamine pyrophosphatase and nucleoside diphosphatase activities. In the rat exorbital lacrimal and parotid glands, reaction product for endogenous peroxidase, a secretory enzyme, was present in the endoplasmic reticulum, Golgi saccules, immature and mature secretory granules. GERL was usually free of reaction product or contained only a small amount. The widespread occurrence of GERL in secretory cells, and its intimate involvement with the formation of granules, suggest that it is an integral component of the secretory process.  相似文献   

17.
Summary Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal -N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate -galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20–50% of these cells in all glands contained terminalN-acetylglucosamine residues. In contrast, terminal -N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.  相似文献   

18.
Ultrastructure of human labial salivary glands. I. Acinar secretory cells   总被引:4,自引:0,他引:4  
The structure of human labial salivary gland acini was studied by light and electron microscopy. Contrary to previous reports, these glands were pure mucous in nature; no serous elements were present. The acinar cells were found in all stages of maturation. Immature cells were characterized by an extensive and highly organized rough-surfaced endoplasmic reticulum. The Golgi complex was extremely prominent, consisting of stacks of flattened cisternae and swarms of small vesicles. Mucous droplets were almost completely absent. As secretory activity progressed, the endoplasmic reticulum involuted, while the Golgi cisternae became distended and formed many vacuoles. In mature mucous cells, the apical cytoplasm was filled with membrane-bounded mucous droplets, and the nucleus was displaced basally. The droplets frequently showed great variation in density from cell to cell, and even within the same cell they sometimes were quite heterogeneous. They were liberated from the acinar cells by an apocrine process, so that droplets with intact limiting membranes were often observed in the acinar lumen. These droplets soon lysed, their contents fusing into streams of mucus. Occasionally during apocrine secretion a mucous cell failed to reconstitute its apical surface, and its entire contents spilled into the acinar lumen. Unusual cytoplasmic inclusions were present in many of the acinar cells. These inclusions, which were surrounded by a single membrane, consisted of lipid droplets closely associated with bundles of fine filaments.  相似文献   

19.
Development of secretagogue response in rat pancreatic acinar cells   总被引:4,自引:0,他引:4  
Two to 3 days prior to birth, acinar cells of the rat pancreas acquire morphologic and biochemical characteristics of the adult gland. To determine if differentiation of the secretory apparatus coincides temporally with the capacity of the cell to respond to secretory stimuli, lobules of embryonic, neonatal, and adult rat pancreas were compared for their ability to respond to secretagogues presumed to act directly via hormone receptors [caerulein and carbamylcholine (carbachol)] or indirectly (cyclic nucleotide analogs and the Ca2+ ionophore A23187). Of all agents tested, only dibutyryl cAMP elicited discharge of secretory proteins at day 20 in utero and preceded hormone stimulation by 1 day. A23187 elicited discharge by Day 21 in utero; its action was near adult levels in contrast to hormonal stimuli whose effect was maximal only at birth. All secretagogues required Ca2+ and energy to induce discharge. Pulse-chase autoradiography of lobules from Day 20 embryonic glands indicated that the acinar cells were capable of transporting [3H]leucine-labeled proteins to zymogen granules at rates roughly equivalent to those in adult glands. SDS gel electrophoretograms confirmed that the bulk of 14C-amino acid incorporation into proteins at a given age was primarily into exportable proteins. The results indicate that acinar cells synthesize and package secretory proteins into zymogen granules about 2 days before they are capable of responding to hormonal stimuli and to intracellular effectors.  相似文献   

20.
There are two discrete lobes comprising the armadillo subman-dibular gland. These two lobes can be defined grossly, histochemically and morphologically with the light and electron microscope. The minor lobe stains more intensely with PAS and AB. When viewed in the electron microscope, the secretory granules of the acinar cells within this lobe appear mucous-like. The granules of the demilune cells are slightly different in appearance. The secretory granules of the acinar cells in the major lobe contain many dense foci embedded in a fibrillar matrix, a substructure not described previously. The demilune cells of this lobe contain secretory granules with a mucous-like structure which is consistent throughout the entire lobe. As in the minor lobe, these demilune cells stain very intensely with PAS and AB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号