首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken to examine the role of heat shock response in the development of tolerance and cross-tolerance in an in vivo murine model of teratogen-induced neural tube defects. The experimental paradigm designed to address this question was to utilize inbred mouse strains that differed in their sensitivity to hyperthermia and valproic acid induced neural tube defects, subjecting the dams to subteratogenic pretreatments with either heat or valproic acid at two different timepoints during development prior to the administration of the teratogenic insult. A statistically significant reduction in the frequency of neural tube defects and/or embryolethality following a pretreatment in dams subsequently exposed to a teratogenic treatment was considered evidence for the induction of tolerance. This was observed in the SWV embryos exposed to the 38°C pretreatment at 8:06 and to embryos exposed to either pretreatment temperature at 8:10 priorto a teratogenic heat shock at 8:12. In the LM/Bc embryos, only the 41°C pretreatment at 8:06 induced thermotolerance. There was no evidence of tolerance induced in either mouse strain using valproic acid. On the other hand, cross-tolerance was clearly demonstrated in this study, with a low temperature (41°C) pretreatment successfully protecting SWV fetuses from a subsequent teratogenic treatment with valproic acid, while valproic acid (200 mg/kg) was effective in reducing the risk of hyperthermia-induced neural tube defects in the LM/Bc fetuses. In all instances, tolerance was induced in the absence of significant induction of hsp synthesis. The lack ofconcordance between hsps and thermotolerance suggests that some other factor(s) is involved in conferring thermotolerance on developing murine embryos. © 1993 Wiley-Liss, Inc.  相似文献   

2.
BACKGROUND: Folate deficiencies have been associated with many adverse congenital abnormalities. It is not clear, however, whether these defects are due to a folate deficiency or to an increase in homocysteine. Homocysteine has been shown to be teratogenic in the chicken-embryo model and it has been suggested that homocysteine-induced defects are mediated by inhibiting the N-methyl-D-aspartate (NMDA) receptor on neural crest cells. The majority of the teratology studies have been carried out using the chicken embryo model. In an effort to develop a murine model of homocysteine-induced neural tube defects, several inbred mouse strains were treated with homocysteine or the NMDA inhibitor MK801 and the fetuses examined for any induced-NTD. METHODS: Several in-bred mouse strains were administered homocysteine once on gestational day (GD) E8.5 or once daily on GD 6.5-10.5. Additionally, because homocysteine was been reported to mediate its effects through the NMDA receptor, the effect of MK801, an antagonist of this receptor, was also investigated. RESULTS: Regardless of the mouse treatment time, homocysteine failed to induce neural tube defects in our in-bred mouse strains. Homocysteine also failed to increase the number of neural tube defects in the splotch strain, regardless of the genotype. CONCLUSIONS: Irrespective of the mouse strain or treatment, homocysteine failed to induce neural tube defects in our mouse models, which is in contrast to what has been reported in the chicken embryo models.  相似文献   

3.
Bacterial catabolism of sulfanilic acid via catechol-4-sulfonic acid   总被引:3,自引:0,他引:3  
Abstract A sulfanilic acid (4-aminobenzenesulfonic acid) degrading culture consisting of two strains (strain S1 and S2), was studied. Only strain S1 was able to attack sulfanilic acid. When strain S1 was cultavated in a mineral medium with sulfanilic acid an intensive violet colour was observed. The accumulating metabolite was isolated from the culture supernatant. By comparison with an authentic compound the metabolite was identified as catechol-4-sulfonic acid by thin layer and high performance liquid chromatography and by UV- and H-NMR spectroscopy. The occurrence of catechol-4-sulfonic acid indicates that there is no release of the sulfonic group before ring cleavage.  相似文献   

4.
Human neural tube defects (NTDs) are among the most common congenital defects. They have a highly heterogeneous etiology, and, in addition to those seen in association with genetic syndromes, there are also NTDs induced by pharmaceutical compounds in utero, such as the widely used anti-epileptic drug valproic acid (VPA). Although familial studies have suggested a genetic contribution to VPA-induced NTDs, this trait has not been adequately studied, nor have the responsible genetic factors been identified. We generated a series of mouse crosses and backcrosses using the highly inbred SWV/Fnn and C57BL/6J strains, in order to identify possible chromosomal loci contributing to VPA sensitivity. When exposed to a high dose of sodium VPA (600 mg/kg) via maternal intraperitoneal injection on gestational day E8.5, the fetuses manifested exencephaly in a strain-dependent manner. Our data show an autosomal recessive trait, plus a gender-related effect or an overall X-Chromosome (Chr) effect, as being primarily responsible for determining sensitivity to VPA-induced exencephaly. Genome scanning and further linkage analysis of 131 exencephalic backcross fetuses identified a major locus linked to D7Mit285 (p < 2 × 10–6), exceeding the threshold for significant linkage. These results suggest a major chromosomal locus associated with the sensitivity to VPA-induced exencephaly in mice.(Robert M. Cabrera and Kimblerly A. Greer) Both authors contributed equally to this work as second authors.  相似文献   

5.
The Axd mutation in the mouse acts by an unknown mechanism to cause lumbosacral open neural tube defects and a variety of tail anomalies. Retinoic acid (RA) plays a number of different physiological and developmental roles and has been shown to affect neurulation in mice and other species. Indeed, reports have shown that this biologically active compound (or its metabolites) at low dose can alter the incidence of neural tube defects (NTD) in curly-tail (ct), splotch (Sp), and delayed splotch (Spd) mice, strains that are genetically predisposed to such abnormalities. The aim of the present study was to determine if RA administered under similar conditions would affect the penetrance or expression of the Axd mutation or survival of Axd homozygotes. Axd/+ and +/+ dams were exposed to RA intraperitoneally (5 mg/kg) on D9 postcoitus. No difference in incidence or extent of neural tube defects or other axial anomalies was detected among embryos of Axd/+ dams given RA compared with those administered vehicle only. This finding is consistent with the diversity of gene-controlled steps required for neurulation and the differing sensitivities of specific mutants to rescue by extrinsic agents.  相似文献   

6.
Strain differences in heat-induced neural tube defects in mice   总被引:4,自引:0,他引:4  
Neural tube defects are common congenital anomalies affecting approximately 0.1% of liveborn infants. It is widely accepted that these disorders are of a multifactorial origin, having both a genetic and an environmental component to their development. In a study designed to elucidate the genetic factors involved in a mouse model of hyperthermia-induced neural tube defects, it is apparent that a hierarchy of susceptibility exists among various inbred mouse strains. Female SWV mice were extremely sensitive to a 10-minute hyperthermic treatment on day 8.5 of gestation, with 44.3% of their offspring having exencephaly. The other strains used in these studies (LM/Bc, SWR/J, C57BL/6J, and DBA/2J) all had less than 14% affected offspring. In experimental situations where the environment is held constant and the only difference between the strains is their genotype, it is assumed that the difference in response to a teratogen is genetically mediated. To test the hypothesis that several genes are involved, reciprocal crosses were made between strains of high, moderate, and low sensitivity. When this was done, the high sensitivity of the SWV strain was lost in the F1 hybrid, implying not only that multiple genes are involved, but that it is the embryo's genotype and not the maternal genotype that is the major factor in determining susceptibility to heat-induced neural tube defects.  相似文献   

7.
Prevention of fumonisin B1-induced neural tube defects by folic acid   总被引:3,自引:0,他引:3  
BACKGROUND: The mycotoxin fumonisin B1 (FB1) inhibits sphingolipid synthesis, blocks folate transport, and has been associated with increased incidences of cancer and neural tube defects. Results from reproductive studies in animal models in vivo and in vitro have demonstrated toxicity in some cases, but no specific terata after fumonisin exposure. No information is available about folic acid's potential to protect against this toxicity. METHODS: Neurulating mouse embryos were exposed to fumonisin or folinic acid in whole embryo culture and assessed for effects on growth and development. RESULTS: Fumonisin exposure inhibited sphingolipid synthesis, reduced growth, and caused cranial neural tube defects in a dose dependent manner. Supplemental folinic acid ameliorated the effects on growth and development, but not inhibition of sphingolipid synthesis. CONCLUSION: Fumonisin has the potential to inhibit embryonic sphingolipid synthesis and to produce embryotoxicity and neural tube defects. Folic acid can reverse some of these effects, supporting results showing that fumonisin disrupts folate receptor function.  相似文献   

8.
Teratogen update: valproic acid   总被引:11,自引:0,他引:11  
Valproic acid use during pregnancy results in an absolute risk for spina bifida of 1-2%. This increased risk is comparable to the recurrence risk for neural tube defects and warrants informed counselling and access to prenatal diagnosis. There is no substantial evidence that valproic acid use increases the risk for other specific major malformations above the increased risk due to maternal epilepsy. Valproic acid may cause a characteristic pattern of minor facial malformations. Further definition and confirmation are required, and the magnitude of the risk needs to be determined. There are inadequate data to assess the magnitude, if any, of the risks for postnatal growth abnormalities and developmental disabilities associated with the use of valproic acid during pregnancy. Birth-defect monitoring programs and international collaboration among the staffs of monitoring programs played a major role in determining that valproic acid is a human teratogen.  相似文献   

9.
Strain differences in phenobarbital-induced teratogenesis in mice   总被引:1,自引:0,他引:1  
Anticonvulsant drugs are widely prescribed medications known to complicate more than 11,500 pregnancies each year in the United States. Although there is no clear consensus as to the teratogenicity of all of the clinically available compounds, it appears that most anticonvulsant drugs can induce congenital abnormalities in susceptible individuals. In a study designed to examine the role of the genotype on sensitivity to phenobarbital-induced malformations, three highly inbred mouse strains (SWV, C57BL/6J, and LM/Bc) received the drug via chronic oral administration. Phenobarbital was found to have a significant teratogenic potential in mice, resulting in skeletal, cardiac, renal, neural, and urogenital defects in a dose-related fashion. The LM/Bc strain was most sensitive to phenobarbital, with 46.7% of the fetuses exposed to the highest maternal plasma concentrations having malformations. C57BL/6J fetuses were the most resistant strain, with only 28.6% abnormalities.  相似文献   

10.
The effect of a single teratogenic dose of the antiepileptic drug valproic acid and its nonteratogenic metabolite, 2-en-valproic acid, on zinc concentrations in mouse plasma, embryo, and decidua on d 9 of gestation was investigated. The substances were injected subcutaneously (sc) as their sodium salts. In this mouse model, valproic acid induced between 20% (400 mg/kg dose) and 60% (600 mg/kg dose) incidence of exencephaly in living fetuses; 2-en-valproic acid was not teratogenic at these dose levels. The zinc concentrations in plasma were significantly increased 1 and 2 h after administration of both substances. The embryonic zinc concentrations were increased 2 and 4 h after application of both substances. The concentrations of zinc in the decidua were not affected. The similarity of effects of valproic acid and its nonteratogenic analog on zinc concentrations in maternal plasma and embryo suggests that the teratogenicity of a single administration of valproic acid in the mouse is not owing to interference with the zinc metabolism in this species.  相似文献   

11.
L Dencker  H Nau  R D'Argy 《Teratology》1990,41(6):699-706
Valproic acid, an antiepileptic drug, causes neural tube defects in mice and man. 14C-labeled valproic acid (sodium-salt) was administered to pregnant mice on days 8 and 9 of gestation (period of high sensitivity in regard to formation of neural tube defects in this species). Two dose levels of valproic acid (1 and 400 mg/kg) were used; in each case the total radioactivity administered was the same: 400 microCi/kg or 14.7 MBq/kg. Autoradiography combined with computerized densitometry revealed that in low-dose animals most of the radioactivity was confined to maternal liver and kidney, while at high doses more activity was observed in soft tissues and fluids, including amniotic fluid. In the embryo, the neuroepithelium showed the highest concentration, irrespective of dose and survival interval (30 min, 3 h, and 6 h). Upon administration of the high dose, up to five times more radioactivity (approximately 2,000 times more valproic acid) was recovered in embryonic tissues than after the low dose. It is concluded that high doses of VPA saturate the capacities of metabolism, excretion, and protein binding in the maternal organism, resulting in a higher proportion of the dose reaching the embryo, allowing more of the drug to be accumulated by the target organ, the neuroepithelium.  相似文献   

12.
It has previously been shown that the inbred mouse strain MS/Ae was more sensitive in the micronucleus test to several mutagenic agents than outbred mice. To elucidate the possible influence of inbreeding, several inbred strains including MS/Ae, AKR, BALB/c, C57 BR were compared to the two OF1 and NMRI outbred strains. The 3 mutagenic agents MNNG, MMC and MMS all induced a significantly higher number of micronuclei in the MS/Ae strain than in any of the other mouse strains. AKR was especially resistant to the alkylating agents MMS and MNNG. Hence, except for the MS/Ae mouse strain, no inbred strain showed a systematically higher sensitivity than the outbred strains for all of the 3 mutagenic agents used.  相似文献   

13.
BACKGROUND: The use of valproic acid during pregnancy has been associated with adverse fetal outcomes, including major and minor congenital malformations, intrauterine growth retardation (IUGR), hyperbilirubinemia, hepatotoxicity, transient hyperglycemia, and fetal and neonatal distress. In addition, intrauterine exposure to valproic acid has been associated with an increased risk of central nervous system abnormalities, primarily neural tube defects. Optic nerve hypoplasia has been reported in association with other prenatal anticonvulsant exposures, but the occurrence of septo-optic dysplasia as a manifestation of valproic acid embryopathy has not been reported previously. RESULTS: We report on a woman who received Depakote (valproic acid) throughout her pregnancy for the treatment of a seizure disorder. The patient presented with features typical of valproic acid embryopathy, including bitemporal narrowing, hypertelorism, short palpebral fissures, epicanthal folds, microphthalmia, a flat broad nasal bridge, small mouth, hypoplastic nails, mild clinodactyly, and camptodactyly. MRI showed hypoplasia of the optic chiasm and absence of the septum pellucidum. CONCLUSIONS: We report the first case of septo-optic dysplasia associated with maternal exposure to valproic acid throughout pregnancy. This case expands the clinical phenotype of valproate embryopathy.  相似文献   

14.
BACKGROUND: Neural tube defects (NTDs) are among the most common human congenital malformations. Although clinical investigations have reported that periconceptional folic acid supplementation can reduce the occurrence of these defects, its mechanism remains unknown. Therefore, the murine mutant Splotch, which has a high incidence of spontaneous NTDs, along with the inbred strains SWV and LM/Bc, were used to investigate the relationship between folate and NTDs. METHODS: To investigate whether folates could reduce spontaneous NTDs, heterozygous Splotch dams (+/Sp) were treated with either folate or folinic acid throughout neurulation, gestational day (GD) 6.5 to 10.5. On GD 18.5 the dams were sacrificed and the fetuses examined for any neural tube defects. Subsequently, Sp/+ dams were treated with arsenic while receiving either a folate or folinic acid supplementation. Similar experiments were performed in the LM/Bc and SWV strains. RESULTS: Neither folate nor folinic acid supplements reduced the frequency of spontaneous NTDs in the embryos from Splotch heterozygote crosses. Arsenic increased the frequency of NTDs and embryonic death in the Splotch, LM/Bc and SWV litters and folinic acid failed to ameliorate the teratogenic effect of this metal. A folate supplement given to arsenic-treated dams proved to be maternally lethal in all three strains. CONCLUSIONS: Splotch embryos were not protected from either spontaneous or arsenic-induced NTDs by folinic or folic acid supplementation. Furthermore, folinic acid supplements did not reduce the incidence of arsenic-induced NTDs in either the LM/Bc or SWV litters.  相似文献   

15.
BACKGROUND: The antiepileptic drug valproic acid (VPA) is well known to cause neural tube and skeletal defects in both humans and animals. The amidic VPA analogues valpromide (VPD) and valnoctamide (VCD) have much lower teratogenicity than VPA inducing exencephaly in mice. The objective of this study was to investigate the teratogenic effects of VPA, VPD, and VCD on the skeleton of NMRI mice. METHODS: Pregnant NMRI mice were given a single subcutaneous injection of VPA (400 and 800 mg/kg), VPD (800 mg/kg), or VCD (800 mg/kg) on the morning of gestation day (GD) 8. Cesarean section was carried out on GD 18. Live fetuses were double‐stained for bone and cartilage and their skeletons were examined. RESULTS: Significant increases in fetal loss and exencephaly rate were observed with VPA at 800 mg/kg compared to the vehicle control. There were no significant differences between either VPD or VCD and the control groups for any parameter at cesarean section. A number of abnormalities were dose‐dependently induced at high incidences by VPA in both the cartilage and bone of vertebrae, ribs and sternum. In contrast, lower frequencies of abnormality were exhibited with VPD and VCD than VPA in all skeletons affected by VPA. CONCLUSIONS: These findings clearly indicate that VPD and VCD are distinctly less teratogenic than VPA in the induction of not only neural tube defects, but also skeletal abnormalities. A structure‐teratogenicity relationship of VPA on the skeleton is suspected. Birth Defects Res B 71:47–53, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

16.
M Trotz  C Wegner  H Nau 《Life sciences》1987,41(1):103-110
Neural tube defects were induced dose-dependently by single injections of the anticonvulsant drug valproic acid (VPA) as sodium salt in mice on gestational day 8. Folinic acid (5-CHO-THF) coadministration by i.p. injection or by a constant rate infusion via osmotic minipumps, implanted s.c., significantly reduced the exencephaly rates using a randomized double-blind experimental procedure. 5-CHO-THF supplementation cut the exencephaly rates into half even at high maternal plasma levels of VPA (p less than 0.005, chi 2-test); resorption rates were not affected. The VPA plasma kinetics were not changed by any of the application regimens of 5-CHO-THF. The investigation of the folate metabolite pattern (determined by HPLC) showed that 5-CHO-THF and 5-methyl-tetrahydrofolic acid (5-CH3-THF) were the main metabolites in untreated mice. After supplementation with 5-CHO-THF, only the concentrations of this folate vitamer were increased in the plasma from 0.3 microgram/ml (normal) to 0.6 or 1.9 micrograms/ml (after injection of 3 x 1 mg/kg or 3 X 4 mg/kg) and to 4.2 micrograms/ml (after infusion via osmotic minipumps). Our results indicate that VPA-induced exencephaly in mice combined with the investigation of the plasma levels of VPA and the different folate metabolites could be an appropriate animal model to study protective effects of folates on the occurrence of neural tube defects.  相似文献   

17.
Previously we have shown that all SELH/Bc mouse embryos close their anterior neural tubes by an abnormal mechanism and that 10-20% of SELH/Bc embryos are exencephalic. The purposes of these studies were (1) to observe the effects of retinoic acid on the frequency of exencephaly in SELH/Bc embryos; (2) to compare the SELH/Bc response with those of normal strains and of other neural tube mutants; and (3) to compare, between SELH/Bc and a normal strain (SWV/Bc), the effects of retinoic acid on morphology of the closing anterior neural tube. SELH/Bc was more liable to retinoic acid-induced exencephaly than were normal strains. After maternal treatment with 5 mg/kg retinoic acid on day 8.5 of gestation, 53% of SELH/Bc embryos had exencephaly, compared with 22% in ICR/Bc and 14% in SWV/Bc. When these results were transformed according to the assumptions of the developmental threshold model, the effects of genotype and retinoic acid appeared to be additive. Similar treatment on day 9 or 10 of gestation had little or no effect on the frequency of exencephaly in SELH/Bc mice. These results are similar to the reported responses of the curly-tail and Splotch mutants, where frequencies of spina bifida but not exencephaly were decreased. This pattern suggests that studies of effects of periconceptional vitamin treatment on risk of human neural tube defects should consider anencephaly and spina bifida separately. The study comparing the morphology of anterior neural tube closure in SELH/Bc and normal SWV/Bc embryos showed that retinoic acid delays the elevation of the mesencephalic neural folds. This results in a "stalling" of many embryos in the first steps of neural tube closure, with their neural folds remaining convex and splayed wide apart. The delay in fold elevation was superimposed on the different closure patterns of the two strains. The overall conclusion is that there is no nonadditive interaction in the parameters studied between retinoic acid treatment and the SELH/Bc genotype.  相似文献   

18.
1. Comparative analyses of regional brain biogenic amines and spontaneous locomotor activity of three mouse strains suggest a genotype dependent relationship. 2. A positive correlation between striatal dopamine and locomotor activity was determined in the inbred albino BALB/c mouse strain. 3. An inverse relationship between some brain regions serotonin and motility was found in the inbred black C57BL/6 mouse strain. 4. No correlation could be established between brain monoamines and motor activity in the hybrid CDF-1 mouse strain. 5. The results suggest that inbred BALB/c and C57BL/6 mouse strains may be useful animal models for studying dopaminergic and serotonergic acting agents, respectively.  相似文献   

19.
Legare ME  Frankel WN 《Genomics》2000,70(1):62-65
The SWXL-4 recombinant inbred mouse strain is unusually sensitive to recurrent tonic-clonic seizures upon routine handling and to seizures induced by chemoconvulsants. In a conventional intercross with the ABP/Le strain, we previously mapped a SWXL-4-derived quantitative trait locus called Szf1 (seizure frequency 1) to Chromosome 7. In the present study, we confirm the existence of Szf1 in both an independent cross and a congenic strain. However, derivative congenic recombinant strains show that an interaction between at least two genes on Chromosome 7-each of which has a very small effect on its own-account for Szf1.  相似文献   

20.
The splotch gene (Sp) and all-trans retinoic acid (RA) interact to cause spina bifida in mouse embryos. To investigate the mechanisms of action of the two, the spinal regions of Sp homozygotes, RA-treated wild-type, and control wild-type embryos were examined histologically by light microscopy on day 9 of gestation. The mean numbers of cells per section in the neural tube, mesoderm, and notochord were determined, along with the percentages of mitotic and pyknotic nuclei and the numbers of migrating neural crest cells. As well, the effect of Sp and RA on the extracellular matrix was studied histochemically with Alcian blue staining for glycosaminoglycans. The main defect in Sp homozygotes was a marked reduction in the number of migrating neural crest cells and the amount of extracellular matrix around the neural tube. Retinoic acid, on the other hand, caused a number of disruptions in the embryo, including abnormalities in the position of the notochord and the shape of the neural tube. Sp and RA delay neural tube closure and thus cause neural tube defects, through different mechanisms. However, the combined effects of the gene and teratogen on the embryo lead to a greater inhibition of neural tube closure than when either is present separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号