首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MutS-based mismatch repair (MMR) system has been conserved from prokaryotes to humans, and plays important roles in maintaining the high fidelity of genomic DNA. MutS protein recognizes several different types of modified base pairs, including methylated guanine-containing base pairs. Here, we looked at the relationship between recognition and the effects of methylating versus ethylating agents on mutagenesis, using a MutS-deficient strain of E. coli. We find that while methylating agents induce mutations more effectively in a MutS-deficient strain than in wild-type, this genetic background does not affect mutagenicity by ethylating agents. Thus, the role of E. coli MMR with methylation-induced mutagenesis appears to be greater than ethylation-induced mutagenesis. To further understand this difference an early step of repair was examined with these alkylating agents. A comparison of binding affinities of MutS with O6-alkylated guanine base paired with thymine, which could lead to transition mutations, versus cytosine which could not, was tested. Moreover, we compared binding of MutS to oligoduplexes containing different base pairs; namely, O6-MeG:T, O6-MeG:C, O6-EtG:T, O6-EtG:C, G:T and G:C. Dissociation constants (Kd), which reflect the strength of binding, followed the order G:T- > O6-MeG:T- > O6-EtG:T- = O6-EtG:C- ≥ O6-MeG:C- > G:C. These results suggest that a thymine base paired with O6-methyl guanine is specifically recognized by MutS and therefore should be removed more efficiently than a thymine opposite O6-ethylated guanine. Taken together, the data suggest that in E. coli, the MMR system plays a more significant role in repair of methylation-induced lesions than those caused by ethylation.  相似文献   

2.
O6-Methylguanine (O6-MeG) is induced in DNA by methylating environmental carcinogens and various cytostatic drugs. It is repaired by O6-methylguanine-DNA methyltransferase (MGMT). If not repaired prior to replication, the lesion generates gene mutations and leads to cell death, sister chromatid exchanges (SCEs), chromosomal aberrations and malignant transformation. To address the question of how O6-MeG is transformed into genotoxic effects, isogenic Chinese hamster cell lines either not expressing MGMT (phenotypically Mex), expressing MGMT (Mex+) or exhibiting the tolerance phenotype (Mex, methylation resistant) were compared as to their clastogenic response. Mex cells were more sensitive than Mex+ cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced chromosomal breakage, with marked differences in sensitivity depending on recovery time. At early recovery time, when cells out of the first post-treatment mitosis were scored, aberration frequency was about 40% reduced in Mex+ as compared to Mex cells. At later stages of recovery when cells out of the second post-treatment mitosis were analyzed, the frequency of aberrations increased strongly in Mex cells whereas it dropped to nearly control level in Mex+ cells. From this we conclude that, in the first post-treatment replication cycle of Mex cells, only a minor part of aberrations (<40%) was due to O6-MeG whereas, in the second post-treatment replication cycle, the major part of aberrations (>90%) was caused by the lesion. Thus, O6-MeG is a potent clastogenic DNA damage that needs two DNA replication cycles in order to be transformed with high efficiency into aberrations. The same holds true for sister chromatid exchanges (SCEs). MNNG is highly potent in inducing SCEs in Mex cells in the second replication cycle after alkylation. Under these conditions, SCE induction is nearly completely prevented by the expression of MGMT. This is opposed to SCE induction in the first post-treatment replication cycle, where higher doses of MNNG were required to induce SCEs and no protective effect of MGMT was observed. This indicates that SCEs induced in the first replication cycle after alkylation are due to other lesions than O6-MeG. In methylation tolerant cells, which are characterized by impaired G–T mismatch binding and MSH2 expression, aberration frequency induced by MNNG was weakly reduced in the first and strongly reduced in the second post-treatment mitoses, as compared to CHO wild-type cells. The results indicate that mismatch repair of O6-MeG–T mispairs is decisively involved in O6-MeG born chromosomal instability and recombination. We also show that Mex+ and methylation tolerant cells are more resistant than Mex cells with regard to induction of apoptosis, indicating O6-MeG to be also an apoptosis-inducing lesion. The data are discussed as to the mechanism of cytotoxicity, aberration and SCE formation in cells treated with a methylating agent.  相似文献   

3.
The pro-mutagenicity of chemically-induced methylation of DNA at the O6 position of dexoyguanosine was studied in cultured adult rat liver epithelial cells. To modify the level of O6-methyldeoxyguanosine (O6-medGuo) resulting from exposure to an alkylating agent, partial depletion of the O6-alkylguanine-DNA alkyltransferase (AGT) repair system was produced by pretreatment of ARL 18 cells with a non-toxic dose of exogenous O6-methylguanine (O6-meG). Exposure of cells to 0.6 mM O6-meG for 4 h depleted AGT activity by about 40%. Intact and pretreated cells were exposed to a range of doses of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus was quantified by measurement of 6-thioguanine-resistant mutants. The mutagenicity of MNNG was dose dependent and was greater in O6-meG pretreated cultures than in intact cultures. Immunoslot blot measurement of O6-medGuo employing a mouse monoclonal antibody demonstrated that MNNG produced O[su6-medGuo and that the intact liver cells were efficient in eliminating this lesion from their DNA. Since depletion of AGT would be expected to affect the rate of elimination of only O6-medGuo, it is concluded that this lesion is highly pro-mutagenic.  相似文献   

4.
Estimates of genotoxic effects of mutagens at low and protracted doses are often based on linear extrapolation of data obtained at relatively high doses. To test the validity of such an approach, a comparison was made between the mutagenicity of N-methyl-N-nitrosourea (MNU) in T-lymphocytes of the rat following two treatment protocols, i.e. sub-chronic exposure to a low dose (15–45 repeated exposures to 1 mg/kg of MNU) or acute exposure to a single high dose (15, 30 or 45 mg/kg of MNU). Mutation induction appeared dramatically lower following sub-chronic treatment compared to treatment with a single high exposure. Furthermore, DNA sequence analysis of the coding region of the hprt gene in MNU-induced mutants showed that acute high dose treatment causes mainly GC → AT base pair changes, whereas sub-chronic treatment results in a significant contribution of AT base pair changes to mutation induction. We hypothesize that O6-methylguanine-DNA methyltransferase is saturated after acute treatments, while after sub-chronic treatment most O6-methylguanine is efficiently repaired. These data suggest (i) that risk estimations at low and protracted doses of MNU on the basis of linear extrapolation of effects measured at high dose are too high and (ii) that the protective effects of DNA repair processes are relatively strong at low sub-chronic exposure.  相似文献   

5.
The relationships between DNA methylation and repair induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to the activation of proto-oncogenes and the induction of pulmonary neoplasia by this carcinogen is described. The formation of the O6-methylguanine (O6MG) adduct following metabolic activation of NNK appears to be a major factor in the induction of lung tumors in both rats and mice and in the activation of the K-ras oncogene in lung tumors from A/J mouse. The potent carcinogenicity of NNK in the rat lung correlated strongly with cell specificity for formation and persistence of the O6MG adduct in the Clara cells. This conclusion was supported by studies with nitrosodimethylamine (NDMA), a weak carcinogen in the rodent lung. Treatment with NDMA was not associated with any pulmonary cell specificity for DNA methylation. The high affinity for activation of NNK compared to NDMA was ascribed to a difference in cytochrome P-450 isozymes involved in the activation of these two nitrosamines. In the A/J mouse, the induction of pulmonary tumorigenesis involved direct genotoxic activation of the K-ras proto-oncogene as a result of the base mispairing produced by formation of the O6MG adduct. In contrast, the induction of pulmonary tumors in the rat by NNK does not appear to involve the ras pathway. It is apparent that different molecular mechanisms are involved in the development of pulmonary tumors by NNK in the mouse and rat. The studies described in this paper illustrate the utility of performing dose-response experiments and the quantitation of DNA methylation and repair in not only target tissues but also target cell types. The fundamental knowledge gained from unraveling the mechanism of carcinogenesis by NNK could lead ultimately to the identification of factors important in the development of human lung cancer.  相似文献   

6.
Styrene oxide was reacted with deoxynucleosides and DNA in aqueous buffer at pH 7.4. The products were purified by HPLC, characterized by UV spectroscopy and by chemical ionization mass spectrometry. The main products identified were 7-alkyl-, N2-alkyl- and O6-alkyldeoxyguanosine, 1-alkyl-, and N6-alkyldeoxyadenosine, N4-alkyl-, 3-alkyl- and O2-alkyldeoxycytidine and 3-alkylthymidine. The relative yields of alkylated deoxynucleosides were dG>dC>dA>T. In the reactions of styrene oxide with DNA the dominant product isolated was 7-alkylguanine but N2-alkylguanine was also detected.  相似文献   

7.
Alkylation damage, DNA repair and mutagenesis in human cells   总被引:5,自引:0,他引:5  
17 human cell lines that differ significantly in level of O6-alkylguanine-DNA alkyltransferase (AGT) activity were identified by comparing their sensitivity to the cytotoxic effect of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and determining the level of AGT activity in cell extracts from the various lines by measuring the decrease in radiolabeled O6-methylguanine from DNA, using high-performance liquid chromatography. 9 lines exhibited high levels of AGT activity, 2 showed an intermediate level (25–50% of the mean of those with the higher levels), and 6 exhibited very low or virtually undetectable levels of AGT. Included were several lines that are very deficient in capacity for nucleotide excision repair. When representatives from the 3 categories of cell lines defined by the level of AGT activity were compared for sensitivity to the cytotoxic and mutagenic effect of MNNG, they showed an inverse correlation between the degree of cell killing and frequency of mutants induced and the level of AGT activity. The cells' capacity for nucleotide excision repair did not affect these results. Exposure of cells with a high level of AGT activity to O6-methylguanine in the medium reduced the AGT activity 60–80%. These pre-treated cells exhibited a significantly higher frequency of MNNG-induced mutants than did cells that were not pre-treated, suggesting that the O6-methylguanine lesion in DNA is responsible for a significant proportion of the mutations induced. Cell strains containing substrates for assaying intrachromosomal homologous recombination were constructed using parental cell lines from each of the 3 categories of AGT activity. These strains showed an inverse correlation between the level of AGT activity and the frequency of MNNG-induced recombination. When various cell lines representing the 3 categories of AGT activity were compared for sensitivity to ethylnitrosourea, the results were consistent with AGT and nucleotide excision repair playing a role in preventing cell killing and mutation induction by this agent.  相似文献   

8.
Methyl iodide (MeI), a weakly mutagenic and highly chemoselective chemicals, was tested for its abilities to induced the adaptive and SOS responses in E. coli CSH26/pMCP1000 (alkA′-lacZ′) and CSH26/psK1002 (umuC′-lacZ′). MeI induced the adaptive response effectively but gave a very weak SOS response. Its potent ability in inducing the adaptive response was also demonstrated by adaptation to both the mutagenic and killing effects of N-methyl-N-nitrosourea (MNU) in E. coli WP2 cells. Simultaneous treatment with MeI in a non-growth medium slightly increased the mutagenicity of MNU, probably as a result of depletion of the repair enzyme, O6-methylguanine-DNA methyltransferase, which is constitutively present in the cells. As MeI itself proved to be only weakly mutagenic, a small part of the adaptive response which we have observed may involve indirect methylation of the repair enzyme by methyl transfer from MeI-induced O6-methylguanine residues in DNA. But the extent of the induced adaptive response seems to be much higher than would be expected from the observed weak mutagenicity of MeI. It is therefore suggested that the mechanism of induction of the adaptive response may involve direct methylation of the O6-methylguanine-DNA methyltransferase itself.  相似文献   

9.
The carcinogenic and mutagenic N-nitroso compounds produce GC to AT and TA to GC transition mutations because they alkylate O6 of guanine and O4 of thymine. It has been generally assumed that these mutations occur because O6-alkylguanine forms a stable mispair with thymine and O4-alkylthymine forms a mispair with guanine. Recent studies have shown that this view is mistaken and that the alkylG·T and alkylT·G mispairs are not more stable than their alkylG·C or alkylT·A counterparts. Two possible explanations based on recent structural studies are put forward to account for the miscoding. The first possibility is that the DNA polymerase might mistake O6-alkylguanine for adenine, and O4-alkylthymine for cytosine, because of the physical similarity of these bases. O6-Methylguanine and adenine are similarly lipophilic and X-ray crystallography of the nucleosides has shown a close similarity in bond angles and lengths between O6-methylguanine and adenine, and between O4-methylthymine and cytosine. The second possible explanation is that the important factor in the miscoding is that the alkylG·T and alkylT·G mispairs retain the Watson-Crick alignment with N1 of the purine juxtaposed to N3 of the pyrimidine while the alkylG·C and alkylT·A pairs adopt a wobble conformation. 31P NMR of DNA duplexes show that the phosphodiester links both 3′ and 5′ to the C have to be distorted to accomodate the O6-ethylguanine:C pair, whereas there is less distortion of the phosphodiesters 3′ and 5′ to the T in an ethylG·T pair. Recent kinetic measurements show that the essential aspect of base selection in DNA synthesis is the ease of formation of the phosphodiester links on both the 3′ and 5′ side of the incoming base. The Watson-Crick alignment of the alkylG·T and alkylT·G mispairs may facilitate formation of these phosphodiester links, and this alignment rather than the strength of the base pairs and the extent of hydrogen bonding between them may be the crucial factor in the miscoding. If either hypothesis is correct it suggests that previously too much emphasis has been placed on the stability of the normal pairs in the replication of DNA.  相似文献   

10.
Incubation in thymidine-containing medium resulted in increased lethality and micronucleus frequency in V79 cells treated with ethyl nitrosourea (ENU), methyl nitrosourea (MNU) and ethyl methanesulphonate (EMS) but not with methyl methanesulfonate (MMS). Thymidine had no effect in ENU treated HeLa cells. In V79 cells, the presence of thymidine during post-treatment DNA replication was necessary for the effect. It is suggested that the increase in chromosome damage was the result of an increased O6-alkylguanine-thymine mispairing in cells which are defective in the repair of O6-alkylguanine. Treatment of V79 cells with O6-ethylguanine resulted in increased production of both micronuclei and polyploid cells. These effects might be explained by spindle dysfunction caused by the alkylated guanine.  相似文献   

11.
We have investigated the genotoxic effects of 1-(2-hydroxyethyl)-1-nitrosourea (HENU). We have chosen this agent because of its demonstrated ability to produce N7-(2-hydroxyethyl) guanine (N7-HOEtG) and O6-(2-hydroxyethyl) 2′-deoxyguanosine (O6-HOEtdG); two of the DNA alkylation products produced by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). For these studies, we have used the Big Blue Rat-2 cell line that contains a lambda/lacI shuttle vector. Treatment of these cells with HENU produced a dose dependent increase in the levels of N7-HOEtG and O6-HOEtdG as quantified by HPLC with electrochemical detection. Treatment of Big Blue Rat-2 cells with either 0, 1 or 5 mM HENU resulted in mutation frequencies of 7.2±2.2×10−5, 45.2±2.9×10−5 and 120.3±24.4×10−5, respectively. Comparison of the mutation frequencies demonstrates that 1 and 5 mM HENU treatments have increased the mutation frequency by 6- and 16-fold, respectively. This increase in mutation frequency was statistically significant (P<0.001). Sequence analysis of HENU-induced mutations have revealed primarily G:C→A:T transitions (52%) and a significant number of A:T→T:A transversions (16%). We propose that the observed G:C→A:T transitions are produced by the DNA alkylation product O6-HOEtdG. These results suggest that the formation of O6-HOEtdG by BCNU treatment contributes to its observed mutagenic properties.  相似文献   

12.
Analysis of the biological effects of specific DNA alkylations by simple alkylating agents is complicated by the variety of sites involved. It is, therefore, of value to be able to incorporate into cellular DNA nucleosides alkylated in a single position, e.g., O6-methyldeoxyguanosine. Such cellular incorporation is particularly difficult to achieve because this nucleoside is rapidly demethylated by adenosine deaminase. We have attempted to achieve such incorporation into the DNA of V79 cells by using coformycin, an inhibitor of adenosine deaminase, and by forcing the cells to depend on exogenous purines by the use of medium containing aminopterin. The DNA of V79 cells exposed to O6-methyl-[8-3H]deoxyguanosine (2.4 μM, sp. act. 14 500 Ci/mole) showed an incorporation level of 4 × 10−8 nucleotides. When 1000-fold higher concentrations were employed (3–15 mM, sp. act. 1.6 Ci/mole), significant cytotoxicity and inhibition of DNA synthesis was observed. However, because it was not economically feasible to administer high specific activity O6-methyldeoxyguanosine to the cells at these concentrations, we could not determine the amount of labeled nucleoside incorporated into DNA. Examination of the frequency of 6-thioguanine-resistant cells in these treated populations showed no significant increase above the background level. Comparison of the cytotoxic effect of O6-methyldeoxyguanosine with deoxyadenosine showed that the toxicity induced by O6-methyldeoxyguanosine could have resulted from mimicry of deoxyadenosine, rather than by incorporation of the alkylated nucleoside itself.  相似文献   

13.
N-Methyl-N′-nitro-N-nitrosoguanidine (MNNG) reacts with 12 nucleophilic sites in DNA to induce a variety of lesions, but O6-methylguanine (O6-MeG) and O4-methylthymine are the most effective premutagenic lesions produced, mispairing with thymine and guanine, respectively. O6-MeG is repaired by O6-alkylguanine-DNA alkyltransferase (AGT), which removes the methyl group from the O6 position and transfers it to itself, rendering the transferase inactive. When diploid human fibroblasts were exposed to 25 μM, O6-benzylguanine (O6-BzG) in the medium for 3 h, their level of AGT activity was dramatically reduced, to a level of at most 1.6% of the control. Populations of cells pretreated with this level of O6-BzG for 2 h or not pretreated, were exposed to MNNG at a concentration of 2, 4 or 6 μM in the presence or absence of O6-BzG and assayed for survival of colony-forming ability and the frequency of 6-thioguanine-resistant cells (mutations induced in the HPRT gene). O6-BzG (25 μM) was also present in the appropriate half of the cells during the 24 h immediately follwing exposure to MNNG. This 27-h exposure to O6-BzG alone had no cytotoxic or mutagenic effect on the cells but significantly increased the cytotoxicity and mutagenecity of MNNG, increasing the mutant frequency to that found previously in human cells constitutively devoid of AGT activity. At doses of 2 μM and 4 μM MNNG, the mutant frequency observed with the AGT-depleted cells was 120 × 10−6 and 240 × 10−6, respectively; in the cells with abundant AGT activity, these values were 10 × 10−6 and 20 × 10−6, respectively. DNA-sequence analysis of the coding region of the HPRT gene in 36 independent mutants obtained from MNNG-treated AGT-depleted populations and 36 from the control populations showed that even though AGT repair lowered the frequency of mutants by more than 90%, it did not affect the kinds of mutations induced by MNNG nor the strand distribution of the premutagenic guanine lesions. In mutants from the AGT-depleted cells, there were 26 base substitutions and 13 putative splice site mutations; in the control, there were 25 base substitutions and 11 splice site mutations. All but two substitutions involved G · C with 92% being G · C → A · T. In both sets, of the premutagenic lesions were located in the nontranscribed strand. Many ‘hot spots’ were seen, and there was evidence that AGT repaired more lesions from the 5′ half of the gene than from the 3′ half.  相似文献   

14.
A line of HeLa cells was shown to be particularly sensitive to N-methyl-N-nitrosourea (MNU) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), but not to variety of other cytotoxic agents. A resistant line (designated HeLa/A22), was derived by treating Hela cells repeatedly with MNU. Both the sensitive (HeLa) and resistant (Hela/A22) cells have a mer phenotype based both on their reduced rates of loss of O6-methylguanine (O6-MeG) from DNA and their low levels of the enzyme O6-methylguanine methyltransferase (MT). HeLa cells are therfore sensitive to unrepaired O6-MeG in DNA while the Hela/A22 cells are resistant to unexcised O6-MeG and thus the A22 cells have the mer rem+ phentype. MNU produced an imediate dose-dependent inhibition of DNA synthesis in cultures of both sensitive resistant cells which increased with time until about 4 h after treatment. DNA synthesis then recovered to near control rates in both sensitive and resistant cells before then exhibiting a progressive decrease after 24 h. DNA synthesis was more depressed at these late times after treatment in cultures of sensitive cells than in those of similarly-treated resistant cells. DNA synthesis remained depressed in sensitive cells but recovered 3 days after treatment in resistant cells.

Post treatment of incubation of MNU-treated HeLa cells with caffeine did not increase the toxic action of MNU. In contrast, post treatment of the resistant HeLa/A22 cells with caffeine resulted in a dramatic increase in the toxic effects of a higher equitoxic dose of MNU. The depressed rate of DNA synthesis observed in both cell lines after doses of MNU was partially reversed by post treatment with caffeine in both sensitive and resistant cells. These observations can be interpreted in terms of the effects of caffeine on DNA replication in treated cells.  相似文献   


15.
J.B. Guttenplan   《Mutation research》1990,233(1-2):177-187
The relationships between DNA alkylation, DNA repair and mutagenesis by N-nitroso compounds in Salmonella were examined. DNA adducts formed by treatment of the bacteria with N-nitroso compounds were monitored. Critical to the study was establishing which adducts led to mutations. Two methods were employed. In one, correlations in the dose-responses for adducts and mutagenesis were sought. For instance O6-methyl- and -ethyl-guanine, in contrast to other adducts, exhibited thresholds in their accumulation in Salmonella DNA, and mutagenesis at GC base pairs also exhibited the same threshold, suggesting a dependence of mutagenesis on the O6-alkyguanines. In the second method, mutagenesis induced by different mutagens with overlapping adduct spectra was compared. For example, EMS and ENU generate similar ratios of adenine adducts, but only ENU produces thymine adducts, and only ENU induced AT-GC and AT-CG base changes. These observations suggested that ethylthymines led to these mutations. Furthermore, it was found that these mutations were largely dependent on the presence of the plasmid, pKM101, indicating that error-prone repair activity contributes importantly in their processing to mutations. When DNA adducts by N-nitrosopyrrolidine were examined it was found that only one major adduct was detected in an excision-repair-deficient strain, and that this adduct was not present in a repair-proficient strain. Mutagenesis was also greatly reduced in the proficient strain, suggesting that mutagenesis was dependent on this adduct. From the relationships between premutagenic adducts levels adducts. This calculation assumed an average distribution of adducts and mutations and required knowledge of the target size and the types of mutations that could lead to phenotypic changes. For the unrepaired O6-methyl- and -ethyl-guanines, and the O-ethylthymines the mutational efficiencies were high (ca. 30–70%), but for the N-nitrosopyrrolidine adduct it was low (ca. 1%). Initial studies were carried out on the mutational specificities of two higher homologue N-nitroso compounds (the N-nitroso-N-propyl- and N-butyl-nitroguanidines) in uvrB/pKM101 strains. This class of nitroso compounds is known to form similar DNA adducts as ENU. Their specificities were similar to that of N-nitroso-N-ethylurea at a high dose except the fraction of mutations at AT base pairs was reduced. The fraction of GC-CG transversions was although low, increased. The mutational specificities of N-nitroso-N-methylurea and N-nitrosopyrrolidine were significantly different from the specificity of ENU as would be expected from their different adduct distributions.  相似文献   

16.
The biological significance of DNA adducts is under continuous discussion because analytical developments allow determination of adducts at ever lower levels. Central questions refer to the biological consequences of adducts and to the relationship between background DNA damage and exposure-related increments. These questions were addressed by measuring the two DNA adducts 7-methylguanine (7-mG) and O6-methyl-2′-deoxyguanosine (O6-mdGuo) by LC–MS/MS in parallel to two biological endpoints of genotoxicity (comet assay and in vitro micronucleus test), using large batches of L5178Y mouse lymphoma cells treated with methyl methanesulfonate (MMS). The background level of 7-mG was 1440 adducts per 109 nucleotides while O6-mdGuo was almost 50-fold lower (32 adducts per 109 nucleotides). In the comet assay and the micronucleus test, background was in the usual range seen with smaller batches of cells (2.1% Tail DNA and 12 micronuclei-containing cells per 1000 binucleated cells, respectively). For the comparison of the four endpoints for dose-related increments above background in the low-response region we assumed linearity at low dose and used the concept of the “doubling dose”, i.e., we estimated the concentration of MMS necessary to double the background measures. Doubling doses of 4.3 and 8.7 μM MMS were deduced for 7-mG and O6-mdGuo, respectively. For doubling the background measures in the comet assay and the micronucleus test, 5 to 15-fold higher concentrations of MMS were necessary (45 and 66 μM, respectively). This means that the contribution of an increase in DNA methylation to biological endpoints of genotoxicity is overestimated. For xenobiotics that generate adducts without background, the difference is even more pronounced because the dose–response curve starts at zero and the limit of detection of an increase is not affected by background variation. Consequences for the question of thresholds in dose–response relationships and for the setting of tolerable exposure levels are discussed.  相似文献   

17.
The quantitative relationship between carcinogenicity in rodents and mutagenicity in Salmonella typhimurium was examined, by using 10 monofunctional alkylating agents, including N-nitrosamides, alkyl methanesulfonates, epoxides, β-propiolactone and 1,3-propane sultone. The compounds were assayed for mutagenicity in two S. typhimurium strains (TA1535 and TA100) and in plate and liquid assays. The mutagenic activity of the agents was compared with their alkylating activity towards 4-(4′-nitrobenzyl)pyridine and with their half-lives (solvolysis constants) in an aqueous medium. No correlations between these variables were found, nor was mutagenic activity correlated with estimates of carcinogenicity in rodents.

There was a positive relationship between carcinogenicity and the initial ratios of 7-: O6-alkylguanine formed or expected after their reaction with double-stranded DNA in vitro. The results suggest that alkylation of guanine at position O6 (or at other O atoms of DNA bases) may be a critical DNA-base modification that determines the overall carcinogenicity of these alkylating agents in rodents.  相似文献   


18.
19.
Treatment with bleomycin activates considerably a repair synthesis of DNA in rat liver chromatin in vitro and can cause loosening of the nucleoprotein complex, which facilitates the accessibility or repair enzymes for lesions in chromatin DNA. The bleomycin action on DNA-template increases severalfold the rate of synthesis catalyzed by DNA polymerase beta inhibits the activity of DNA polymerase I from Escherichia coli and suppresses severalfold the activity of DNA polymerase alpha and DNA polymerase of bacteriophage T4. The effect of bleomycin consists in a prevailing increase of nicks and minimal gaps in DNA as compared to the rise of moderate gaps, thus suggesting that bleomycin is a gamma-mimetic.  相似文献   

20.
Mutation to tryptophan independence after exposure to radiation at the monocrhomatic wavelengths of 254 and 365 nm was studied and compared in 7 strains of Escherichia coli B/r that differ in repair capability. Efficient mutation induction was obtained with both 254-nm and 365-nm radiation with strains WP2 (wild-type), WP2s (uvrA), WP6s (polA uvrA). Mutants were not induced at either wavelength in the lexA strain WP5 or the recA strains WP10 and WP100. These results support the induction of mutants with 365-nm radiation through the error-prone (SOS) pathway of postreplication repair. Log-log plots of tryptophan revertant data at 254 nm showed the expected slopes of approximately 2.0 over the entire influence range tested. In contrast, similar plots of revertant data at 365 nm were complex in all cases tested: at low fluence values (survival greater than 0.5) in all cases where reversion occurred the slopes were approximately 1.0, while at higher fluences (survival less than 0.5) the slopes of the log-log plots were approximately 3.0 with strains WP2s and WP6s, approximately 4.0 with strain WP6 and approximately 6.0 with strain WP2. Differential sensitivity of components of excision and postreplication repair systems to 365-nm radiation may account for the 2-part mutation curves obtained with uvr+ rec+ lex+ strains. It is proposed that efficient error-free repair of mutational lesions occurs at 365-nm fluences below 2–4×105 J m2−; at greater 365-nm fluences, error-free excision repair may be selectively inhibited, forcing a greater fraction of mutational lesions to be processed by the error-prone component of the postreplication repair system. The similarity of the mutational responses of WP2s and WP6 at 365 nm supports the selective inhibition of error-free excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号