首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ribonucleotide oligomers U-G-A and U-G-A-A have been synthesized enzymatically. These oligomers are cognates of the U33-Gm34-A35-A36 sequence found in the anticodon loop of t-RNAphe. The 1H-NMR chemical shifts of the base and ribose HI' protons as well as the couplings. J1'–2', of the ribose protons have been examined as a function of temperature. Assignments for these resonances have been completed, and used in the analysis of solution conformation for these oligomers. The results are consistent with the A-RNA structure and suggest the absence of alternative ordered solution structures.  相似文献   

2.
The solution conformations of adenosine, guanosine and inosine in liquid ND3 have been determined by NMR. Comparison of the Karplus analysis of the proton HR spectra of the ribose moiety obtained in this solvent with the data from aqueous solutions of A and I proves that the conformations of the nucleosides are very similar in both liquids. From the analysis of the vicinal coupling constants of the ring protons it has been deduced that the S state C(2′)-endo is slightly preferred. The mole fraction in S approximates 0.6 for all three nucleosides. C-13 relaxation measurements have been applied in the determination of the correlation times for rotational diffusion. Only at temperatures below −40‡ C is the pseudorotation of the furanoside ring slowed down sufficiently for it not to contribute to the measured relaxation rates. From NOE studies and T1 measurements on the individual protons it is derived that the N, C(3′)-endo, form of the ribose is correlated with an anti conformation of the base (Y≈210‡ to 220‡) and the S, C(2′)-endo, form of the ribose with a syn conformation of the base (Y≈30‡ to 50‡). The glycosyl torsion angles derived for the two conformations of A, G, and I are equal within the limits of accuracy.  相似文献   

3.
Lanthanide DOTA-tetraglycinate (LnDOTA-(gly)4 ) complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST) NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly)4 complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III), Dy(III), Tm(III) and Yb(III) were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III) complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III) complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly)4 at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼104 compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.  相似文献   

4.
The conformational change of the ribose ring in NH4GpG and cis-[Pt(NH3)2(GpG)]+ was confirmed by FT-IR spectroscopic evidence as being C2′-endo, C3′-endo, anti, gg sugar ring pucker in the solid state. These results were compared with 1H NMR spectral data in aqueous solution. The FT-IR spectrum of NH4GpG shows marker bands at 802 cm?1 and 797 cm?1 which are assigned to the C3′-endo, anti, gg sugar-phosphate vibrations of ribose (?pG) and ribose (Gp?), respectively. The FT-IR spectrum of cis-[Pt(NH3)2(GpG)]+ (with N7N7 chelation in the GpG sequence) shows a marker band at 800 cm?1 which is assigned to the C3′-endo, and a new shoulder band at 820 cm?1 related to a C2′-endo ring pucker. The ribose conformation of (?pG) moiety in NH4-GpG, C3′-endo, anti, gg changes into C2′-endo, anti, gg when a platinum atom is chelated to N7N7 in the GpG sequence.  相似文献   

5.
DNA dodecamers have been designed with two cytosines on each end and intervening A and T stretches, such that the oligomers have fully complementary A:T base pairs when aligned in the parallel orientation. Spectroscopic (UV, CD and IR), NMR and molecular dynamics studies have shown that oligomers having the sequences d(CCATAATTTACC) and d(CCTATTAAATCC) form a parallel-stranded duplex when dissolved at 1:1 stoichiometry in aqueous solution. This is due to the C:C+ clamps on either end and extensive mismatches in the antiparallel orientation. The structure is stable at neutral and acidic pH. At higher temperatures, the duplex melts into single strands in a highly cooperative fashion. All adenine, cytosine and thymine nucleotides adopt the anti conformation with respect to the glycosidic bond. The A:T base pairs form reverse Watson–Crick base pairs. The duplex shows base stacking and NOEs between the base protons T(H6)/A(H8) and the sugar protons (H1′/H2′/H2″) of the preceding nucleotide, as has been observed in antiparallel duplexes. However, no NOEs are observed between base protons H2/H6/H8 of sequential nucleotides, though such NOEs are observed between T(CH3) and A(H8). A three-dimensional structure of the parallel-stranded duplex at atomic resolution has been obtained using molecular dynamics simulations under NMR constraints. The simulated structures have torsional angles very similar to those found in B-DNA duplexes, but the base stacking and helicoid parameters are significantly different.  相似文献   

6.
In order to establish whether p.m.r. spectroscopy is useful for identifying Amadori- and Heyns-rearrangement products, the p.m.r. spectra at 220 MHz of 16 rearrangement products derived from d-glucose or d-fructose and amino acids have been investigated. At pH 3, the protons of the NCH2 group of N-substituted 1-amino-1-deoxy-d-fructose (Amadori-rearrangement products) resonate at δ 3.25–3.60 in D2O and are shifted upfield by 0.3–0.6 p.p.m. at pH 9. These protons exchange with deuterium. Also, in D2O there is an equilibrium of the acyclic, furanose, and pyranose structures, the last being favoured. At pH ? 7, the equilibrium is completely shifted to the β-pyranose form, which adopts exclusively the 2C5 conformation. At pH 3, the equilibrium favours the β-furanose form. At pH 3, H-1e and H-1a of N-substituted 2-amino-2-deoxy-d-glucoses (Heyns-rearrangement products) resonate at δ 5.55 and 5.04, respectively. At pH 9, the signal for H-2 is shifted upfield by 0.2–0.7 p.p.m. In D2O solution, these compounds exist as an equilibrium of α- and β-pyranose forms in the 4C1 conformation. The α anomer is stabilised by the amino acid group at position 2. At pH 3, the αβ-ratio is 2–4:1, and, at pH 9, 1.0–1.1:1.  相似文献   

7.
The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ1–42) is the most important pathophysiological event associated with Alzheimer''s disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu2+ and various drugs used for AD treatment, such as galanthamine (Reminyl®), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu2+ and galanthamine prevent the formation of Aβ1–42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1–42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ1−42 in the presence of Cu2+ or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu2+) or to Lys 28 (galanthamine), which prevents Aβ1−42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu2+ and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.  相似文献   

8.
Two esteroproteolytic enzymes (A and D) have been isolated from the mouse submaxillary gland and shown to be pure by ultracentrifugation, immunoelectrophoresis, acrylamide-gel electrophoresis, and amino acid analyses. The enzymes have molecular weights of approximately 30,000 and are structurally and antigenically related. Narrow pH optima between 7.5 and 8.0 are exhibited by both enzymes. The “pK1's” are between 6.0 and 6.5 and the “pK2's” are near 9.0. A marked preference for arginine-containing esters is shown by both enzymes. The maximum specific activity of enzyme A on p-tosylarginine methyl ester (TAME) at pH 8 was 2500–3000 μm min?1 mg?1 and for enzyme D, 400–600 μm min?1 mg?1. With TAME as substrate, the Km for enzyme A was 8 × 10?4m at 25 °C and 6 × 10?4m at 37 °C. For D, Km was 3 × 10?4 at 25 °C and 2 × 10?4m at 37 °C.An apparent activation of enzyme D by tosylarginine (TA), a product of TAME hydrolysis, and all α-amino acids examined was due to removal of an inhibitor by chelation. This effect could be duplicated by 8-hydroxyquinoline and diethyldithiocarbamate but not by EDTA. Enzyme A was not affected by these substances to any remarkable extent. Several divalent ions proved to be potent inhibitors of enzyme D. Both enzymes are inactivated by the active site reagents diisopropyl phosphofluoridate and tosyllysine chloromethylketone but much less rapidly than is trypsin. Nitrophenyl-4-guanidionobenzoate reacts with a burst of nitrophenol liberation but with a rapid continuing hydrolysis. One active site per molecule is indicated. Enzyme D is inactivated by urea, reversibly at 10 m and with maximal permanent losses at 6 m. Autolysis of the unfolded form by the native enzyme when they coexist at intermediate urea concentrations appears to occur.Identity of enzyme D and the epithelial growth factor binding protein is demonstrated.  相似文献   

9.
10.
Structures at the 5′ terminus of poly (A)-containing cytoplasmic RNA and heterogeneous nuclear RNA containing and lacking poly(A) have been examined in RNA extracted from both normal and heat-shocked Drosophila cells. 32P-labeled RNA was digested with ribonucleases T2, T1 and A and the products fractionated by a fingerprinting procedure which separates both unblocked 5′ phosphorylated termini and the blocked, methylated, “capped” termini, known to be present in the messenger RNA of most eukaryotes.Approximately 80% of the 5′-terminal structures recovered from digests of poly(A)-containing Drosophila mRNA are cap structures of the general form m7G5′ppp5′X(m)pY(m)pZp. With respect to the extent of ribose methylation and the base distribution, the 5′-terminal sequences of Drosophila capped mRNA appear to be intermediate between those of unicellular eukaryotes and those of mammals. Drosophila is the first organism known in which type 0 (no ribose methylations), type 1 (one ribose methylation), and type 2 (two ribose methylations) caps are all present. In contrast to mammalian cells, the caps of Drosophila never contain the doubly methylated nucleoside N6,2′-O-dimethyladenosine. Both purines and pyrimidines can be found as the penultimate nucleoside of Drosophila caps and there is a wide variety of X-Y base combinations. The relative frequencies of these different base combinations, and the extent of ribose methylation, vary with the duration of labeling. The large majority of poly(A)-containing cytoplasmic RNA molecules from heat-shocked Drosophila cells are also capped, but these caps are unusual in having almost exclusively purines as the penultimate X base.Greater than 75% of the 5′ termini of heterogeneous nuclear RNA (hnRNA) containing poly(A) and greater than 50% of the termini of hnRNA lacking poly (A) are also capped. Triphosphorylated nucleotides, common as the 5′ nucleotides of mammalian hnRNA, are rare in the poly(A)-containing hnRNA of Drosophila. The frequency of the various type 0 and type 1 cap sequences of cytoplasmic and nuclear poly (A)-containing RNA are almost identical. The caps of hnRNA lacking poly(A) are also quite similar to those of poly-adenylated hnRNA, but are somewhat lower in their content of penultimate pyrimidine nucleosides, suggesting that these two populations of molecules are not identical.  相似文献   

11.
The conformation of cyclic 3′,5′-adenosine monophosphate in deuterium oxide has been determined at pH 2.0 and pH 5.5, using lanthanide ions as paramagnetic nuclear magnetic resonance probes.The lanthanide ion-induced shifts in the nuclear magnetic resonance energy for a given nucleus are dependent on the geometric position of that nucleus relative to the bound lanthanide ion. As expected, these shifts are pseudocontact in origin and are consistent with axial symmetry. Analysis of the concentration dependence of the shift shows that the lanthanide ion is bound to the phosphate entity giving a 1:1 complex. Further, base stacking and other intermolecular interactions are negligible.To confirm the conformation, which is found from a computer search with the above shift data, we have measured the changes in relaxation times, T1 and T2, induced by binding of Gd3+. The geometric dependence of these relaxation effects is different from that of shifts, being dependent only on distance. The agreement of these data with the computer “shift” conformation is satisfactory.Some 31P nuclear magnetic resonance experiments were done to confirm the metal co-ordination position although, here, there are contact contributions to both shift and relaxation.The computer program finds the conformations that have the correct geometry to account for the shift data, by searching all possible conformations. Non-bond rotations were used as a method of changing the pucker of the phosphate and ribose rings, the position of the base being defined by a single bond rotation. The nuclear magnetic resonance data and minimum van der Waals' distances were used as “active filters” in the computer search.At both values of the pH we have found closely related families of solutions, with the pucker of the phosphate and ribose rings roughly similar to those in an approximate X-ray study of cyclic AMP. The orientation of the base varies with pH.  相似文献   

12.
The variations of the ring current, the local diamagnetic susceptibility anisotropy and the polarization contributions to the chemical shift of the non exchangeable protons of the ribose ring of purine nucleosides are computed as a function of the torsion angle about the glycosyl bond, χCN. The results show that the ring current effect is relatively more important in the purines than in the pyrimidines. In addition, N3 of purines has a local magnetic anisotropy effect similar to the one of the carbonyl group C2O2 of pyrimidine nucleosides. The experimental differences between the chemical shift of the ribose protons of purine nucleosides and of 8 substituted derivatives are discussed in relation to the theoretical variations.  相似文献   

13.
This paper reports the effects of amphotericin B, a polyene antibiotic, on the water and nonelectrolyte permeability of optically black, thin lipid membranes formed from sheep red blood cell lipids dissolved in decane. The permeability coefficients for the diffusion of water and nonelectrolytes (PDDi) were estimated from unidirectional tracer fluxes when net water flow (Jw) was zero. Alternatively, an osmotic water permeability coefficient (Pf) was computed from Jw when the two aqueous phases contained unequal solute concentrations. In the absence of amphotericin B, when the membrane solutions contained equimolar amounts of cholesterol and phospholipid, Pf was 22.9 ± 4.6 µsec-1 and P DDHDH2O was 10.8 ± 2.4 µsec-1. Furthermore, PDDi was < 0.05 µsec-1 for urea, glycerol, ribose, arabinose, glucose, and sucrose, and σi, the reflection coefficient of each of these solutes was one. When amphotericin B (10-6 M) was present in the aqueous phases and the membrane solutions contained equimolar amounts of cholesterol and phospholipid, P DDHDH2O was 18.1 ± 2.4 µsec-1; Pf was 549 ± 143 µsec-1 when glucose, sucrose, and raffinose were the aqueous solutes. Concomitantly, PDDi varied inversely, and σi directly, with the effective hydrodynamic radii of the solutes tested. These polyene-dependent phenomena required the presence of cholesterol in the membrane solutions. These data were analyzed in terms of restricted diffusion and filtration through uniform right circular cylinders, and were compatible with the hypothesis that the interactions of amphotericin B with membrane-bound cholesterol result in the formation of pores whose equivalent radii are in the range 7 to 10.5 A.  相似文献   

14.
Vaccinia viral envelope protein A27 (110 amino acids) specifically interacts with heparin (HP) or heparan sulfate (HS) proteoglycans for cell surface attachment. To examine the binding mechanism, a truncated soluble form of A27 (sA27-aa; residues 21–84 of A27) with Cys71 and Cys72 mutated to Ala was used as the parent molecule. sA27-aa consists of two structurally distinct domains, a flexible Arg/Lys-rich heparin-binding site (HBS) (residues 21–32; 21STKAAKKPEAKR32) and a rigid coiled-coil domain (residues 43–84), both essential for the specific binding. As shown by surface plasmon resonance (SPR), the binding affinity of sA27-aa for HP (KA = 1.25 × 108 m−1) was approximately 3 orders of magnitude stronger than that for nonspecific binding, such as to chondroitin sulfate (KA = 1.65 × 105 m−1). Using site-directed mutagenesis of HBS and solution NMR, we identified a “KKPE” segment with a turn-like conformation that mediates specific HP binding. In addition, a double mutant T22K/A25K in which the KKPE segment remained intact showed an extremely high affinity for HP (KA = 1.9 × 1011 m−1). Importantly, T22K/A25K retained the binding specificity for HP and HS but not chondroitin sulfate, as shown by in vitro SPR and in vivo cell adhesion and competitive binding assays. Molecular modeling of the HBS was performed by dynamics simulations and provides an explanation of the specific binding mechanism in good agreement with the site-directed mutagenesis and SPR results. We conclude that a turn-like structure introduced by the KKPE segment in vaccinia viral envelope protein A27 is responsible for its specific binding to HP and to HS on cell surfaces.  相似文献   

15.
The magnetic field dependence of the NMR spin-lattice relaxation time of water protons in intact bovine chromaffin vesicles has been studied over the range 1.00–23.49 kG. The T1 relaxation time shows a dispersion a t field values near 20 kG. The observed proton resonance arises mainly from solvent protons (1H2O), but the relaxation rate, which is a weighted average over all sites with which the solvent protons rapidly exchange (i.e., NH and OH protons), is dominated by exchangeable protons in the most slowly moving soluble component. The field dependence of the T1 dispersion demonstrates the existence of a site of exchangeable protons for which τr = 1.9±0.5 ns at 3°C. This site is assigned to ATP and cationic groups to which its phosphate esters are complexed, since previously measured correlation times of epinephrine and the chromogranin backbone are nearly an order of magnitude too short to explain the T1 dispersion. Quantitative estimates of the relative numbers of exchangeable protons on the different soluble components support this interpretation. The temperature dependence of T1 of the peak due to exchangeable protons has also been measured over a temperature range ?3 to 25°C. T1 lengthens by about 30% over this range and exhibits no discontinuous behavior, as would be expected if a gel transition or structural alterations in the storage complex occurred. T1 lengthens by less than 10% in chromaffin granule pastes that have been maintained at 25°C for 24 h, indicating considerable thermal stability in the storage complex. Possible effects on the solvent T1 due to paramagnetic ions have been considered with the conclusion that they are probably negligible or of minor significance.  相似文献   

16.
The conformation and dynamic structure of single-stranded poly(inosinic acid), poly(I), in aqueous solution at neutral pH have been investigated by nmr of four nuclei at different frequencies: 1H (90 and 250 MHz), 2H (13.8 MHz), 13C (75.4 MHz), and 31P (36.4 and 111.6 MHz). Measurements of the proton-proton coupling constants and of the 1H and 13C chemical shifts versus temperature show that the ribose is flexible and that base-base stacking is not very significant for concentrations varying from 0.04 to 0.10M in the monomer unit. On the other hand, the proton T1 ratios between the sugar protons, T1 (H1′)/T1 (H3′), indicate a predominance of the anti orientation of the base around the glycosidic bond. The local motions of the ribose and the base were studied at different temperatures by measurements of nuclear Overhauser enhancement (NOE) of protonated carbons, the ratio of the proton relaxation times measured at two frequencies (90 and 250 MHz), and the deuterium quadrupolar transverse relaxation time T2. For a given temperature between 22 and 62°C, the 13C-{1H} NOE value is practically the same for seven protonated carbons (C2, C8, C1′, C2′, C3′, C4′, C5′). This is also true for the T1 ratio of the corresponding protons. Thus, the motion of the ribose–base unit can be considered as isotropic and characterized by a single correlation time, τc, for all protons and carbons. The τc values determined from either the 13C-{1H} NOE or proton T1 ratios, T1(90 MHz)/T1(250 MHz), and/or deuterium transverse relaxation time T2 agree well. The molecular motion of the sugar-phosphate backbone (O-P-O) and the chemical-shift anisotropy (CSA) were deduced from T1 (31P) and 31P-{1H} NOE measurements at two frequencies. The CSA contribution to the phosphorus relaxation is about 12% at 36.4 MHz and 72% at 111.6 MHz, corresponding to a value of 118 ppm for the CSA (σ = σ∥ ? σ?). Activation energies of 2–6 kcal/mol for the motion of the ribose–base unit and the sugarphosphate backbone were evaluated from the proton and phosphorus relaxation data.  相似文献   

17.
Heparin-like glycans with diverse disaccharide composition and high anticoagulant activity have been described in several families of marine mollusks. The present work focused on the structural characterization of a new heparan sulfate (HS)-like polymer isolated from the mollusk Nodipecten nodosus (Linnaeus, 1758) and on its anticoagulant and antithrombotic properties. Total glycans were extracted from the mollusk and fractionated by ethanol precipitation. The main component (>90%) was identified as HS-like glycosaminoglycan, representing ∼4.6 mg g−1 of dry tissue. The mollusk HS resists degradation with heparinase I but is cleaved by nitrous acid. Analysis of the mollusk glycan by one-dimensional 1H, two-dimensional correlated spectroscopy, and heteronuclear single quantum coherence nuclear magnetic resonance revealed characteristic signals of glucuronic acid and glucosamine residues. Signals corresponding to anomeric protons of nonsulfated, 3- or 2-sulfated glucuronic acid as well as N-sulfated and/or 6-sulfated glucosamine were also observed. The mollusk HS has an anticoagulant activity of 36 IU mg−1, 5-fold lower than porcine heparin (180 IU mg−1), as measured by the activated partial thromboplastin time assay. It also inhibits factor Xa (IC50 = 0.835 μg ml−1) and thrombin (IC50 = 9.3 μg ml−1) in the presence of antithrombin. In vivo assays demonstrated that at the dose of 1 mg kg−1, the mollusk HS inhibited thrombus growth in photochemically injured arteries. No bleeding effect, factor XIIa-mediated kallikrein activity, or toxic effect on fibroblast cells was induced by the invertebrate HS at the antithrombotic dose.  相似文献   

18.
Purified HeLa cell tRNA methylases have been used for site-specific methylations of Escherichia coli formylmethionine transfer ribonucleic acid (tRNAfMet). Guanine-N2-methylase catalyzed the methylation of a specific guanine residue (G27) and adenine-1-methylase that of a specific adenine residue (A59). The combined action of both of these enzymes leads to a total incorporation of two methyl groups and results in the methylation of both G27 and A59.The effect of introducing additional methyl groups on the function of tRNA has been studied by a comparison in vitro of the biological properties of tRNAfMet and enzymically methylated tRNAfMet. It was found that none of the following properties of E. coli tRNAfMet are altered to any significant extent by methylation: (a) rate, extent, and specificity of aminoacylation, (b) ability of methionyl-tRNA to be enzymically formylated, and (c) ability of formylmethionyl-tRNA to initiate protein synthesis in cell-free extracts of E. coli in the presence of f2 RNA as messenger. Also, the temperature versus absorbance profile of the doubly methylated tRNAfmet was virtually identical to that of the E. coli tRNAfMet, and enzymically methylated tRNAfmet resembled tRNAfMet in that both were resistant to deacylation by E. coli, N-acylaminoacyl-tRNA hydrolase.  相似文献   

19.
Pore gradient electrophoresis (PGE) in the presence of sodium dodecyl sulfate (SDS) provides a means for high resolution fractionation of multicomponent protein systems and permits estimation of molecular weights for macromolecules ranging from 103 to 106. We have evaluated the performance of several methods used to construct calibration curves for estimation of molecular weights using SDS-PGE. A linear relationship between the logarithm of molecular weight, log (Mr), and the logarithm of the relative mobility, log (Rl), can be obtained for a 30-fold range of molecular weights. However, this range of linearity depends on the choice of the concentration gradient, the degree of crosslinking of the gel, and on the nature of the underlying relationship between the retardation coefficient, KR, and the molecular weight. An empirical relationship, first introduced by Lambin et al. (1976, Anal. Biochem.74, 567) between log (Mr) and the logarithm of the gel concentration at the position reached by the protein, log (%T), provides better linearity over a wider molecular weight range than does the use of log (Rl). We have compared these relatienships by experimental analysis of 10 standard proteins and by a theoretical analysis of an idealized model system. A computer program has been developed which provides appropriate statistical estimation of the molecular weight for an unknown protein, together with its standard error and 95% confidence limits. A new method has also been developed for analysis of nonlinear calibration curves in terms of molecular weight versus distance migrated, based on a theoretically justifiable, physical-chemical model. This model implies that either the relationship between log (Mr) and log (Rl) or the one between log (Mr) and log (%T) will become nonlinear as the range of molecular weight is extended. We suggest that the use of a nonlinear least-squares curve-fitting procedure provides an optimal method for molecular weight estimation when sufficient data are available. Based on these findings, a general strategy is presented for estimation of molecular weights by polyacrylamide gel electrophoresis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号