首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work investigates the effect of complexation with hydroxypropyl-beta-cyclodextrin (HPBCD) and 2-O-methyl-beta-cyclodextrin (2-O-MBCD), on voriconazole solubility, dissolution rate and chemical stability. Drug–cyclodextrin complexes were prepared as aqueous solutions, which were spray-dried, and their properties were compared to wet ground samples and physical mixtures. DSC analysis revealed absence of crystalline voriconazole from spray-dried complexes. FTIR spectroscopy indicated changes in the H-bonding network of the hydroxyl groups of cyclodextrin following drug inclusion. Dissolution rate of voriconazole was significantly higher from spray-dried complexes with either cyclodextrin in comparison with free drug, physical mixtures, or wet ground mixtures. However, two degradation impurities were found in aged samples, with slightly higher impurity level with HPBCD. Performed solubility studies suggested that 2-O-MBCD is more efficient solubilizer. Molecular docking simulations showed a difference in the 1:1 binding affinities and sites, with HPBCD surprisingly forming complexes of much lower energy, thus suggesting a multiple rather than a 1:1 complexation.  相似文献   

2.
The Raman and absorption spectra of tetraphenylporphyrin (TPP) were calculated and compared to experiment. The computation was based on the harmonic molecular force field and electric tensors obtained ab initio at the BPW91/6-31G* level. Good agreement was found between experimental and calculated frequencies and intensities. In order to estimate whether induced optical activity in chiral complexes interferes with the signal of peptide vibrations, the vibrational circular dichroism (VCD) spectra of TPP were simulated. The magnetic field perturbation theory (MFP) and the gauge-invariant atomic orbitals (GIAO) were used for the simulation. Such spectra were compared to theoretical VCD intensities of a model tripeptide as well to experimental spectra of a complex of the peptide and tetrakis(p-sulfonatophenyl)porphyrin (TSPP). No significant contribution to VCD signal from the TPP residue was found in experimental spectra. Thus, possible peptide conformational changes occurring during the complexation can be monitored directly in the amide I frequency region.  相似文献   

3.
The inclusion interaction between hydroxypropyl-β-cyclodextrin (HP-β-CD) and 21 2-aryl carboxylic acids was investigated by UV (ultraviolet) spectrophotometer. The inclusion constant of each 2-aryl carboxylic acids with HP-β-CD was determined by Benesi–Hildebrand's equation. According to our previous work, it was found that a high inclusion constant for inclusion complex formed by a racemate and cyclodextrin was always observed with the fact that a high enantioseparation factor was achieved for the racemate in enantioseparation by liquid–liquid chromatography, which suggested that high binding combination between racemate and cyclodextrin is very important for a successful enantioseparation in enantioselective liquid–liquid extraction. Among all the studied subjects, mandelic acid enantiomer, 2,3-diphenylpropionic acid enantiomer, and naproxen enantiomer were selected for the further study. The inclusion constants of enantiomers of these three subjects were determined by UV spectra, which indicated that a necessary difference in inclusion constants between enantiomer and cyclodextrin was also essential. It was found in UV spectra that the absorbance of the analytes with the addition of cyclodextrin would increase or decrease, which was determined by the type of electron excitation. The conformation changes of small molecules can lead to the changes of chromophore valence electron clouds distribution, causing the HOMO-LUMO energy difference decreased. Thus, a red shift of the wavelength of the maximum absorption was produced indicating that the possibility of the molecular interaction of enantiomers with HP-β-CD exists.  相似文献   

4.
Methyl esters of [5]-ladderanoic acid and [3]-ladderanoic acid were prepared by esterification of the acids isolated from biomass at a wastewater treatment plant. Optical rotations at six different wavelengths (633, 589, 546, 436, 405 and 365 nm) and vibrational circular dichroism (VCD) spectra in the 1800–900 cm−1 region were measured in CDCl3 solvent and compared with quantum chemical (QC) predictions using B3LYP functional and 6-311++G(2d,2p) basis set with polarizing continuum model representing the solvent. QC predictions gave negative optical rotations at all six wavelengths for (R)-methyl [5]-ladderanoate and positive optical rotations for (R)-methyl [3]-ladderanoate, the same signs as previously reported for the corresponding acids. The crystal structure of (−)-methyl [5]-ladderanoate independently confirmed (R) configuration. The QC-predicted VCD spectra using Boltzmann population weighted spectra of individual conformers did not provide satisfactory quantitative agreement with the experimental VCD spectra. An improved quantitative agreement for VCD spectra could be obtained when conformer populations were optimized to maximize the similarity between experimental and predicted VCD spectra, but more improvements in VCD predictions are needed.  相似文献   

5.
The formation of inclusion complexes between cyclodextrins (cyclohexa-, cyclohepta-, and cyclooctamylose) and either 1-anilinonaphthalene-8-sulfonate or 2-p-toluidinylnaphthalene-6-sulfonate was investigated by ionspray mass spectrometry operated both in the positive and in the negative ion mode. This soft ionisation technique allowed the detection of the inclusion complexes; the presence of false positives was excluded by increasing the voltage at the orifice which caused breakage of the electrostatic adducts and some fragmentation of the free cyclodextrin molecules, but left the inclusion complexes intact. The spectra recorded in the negative mode showed the presence of complexes formed by two cyclodextrin molecules and one aromatic molecule; such stoichiometry was not detected in the positive mode.  相似文献   

6.
This article reports vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopic studies in acetonitrile on the chiral Rh(2)(O-Phe-Cbz)(1)(OAc)(3) and Rh(2)(O-Phe-Ac)(1)(OAc)(3) complexes (abbreviated Rh(2)Z(1) and Rh(2)Ac(1) , respectively; Phe, L-phenylalanine; Cbz, benzyloxycarbonyl; Ac, acetyl) supported by theoretical calculations. The ECD spectra of the complexes depend on temperature that indicates the conformational mobility of the chiral ligands. Calculations of the VCD spectra were performed at ab initio (DFT) level of theory using Gaussian 03 [B3LYP functional combined with the LANL2DZ basis set for the dirhodium core and the 6-31G(d) basis set for other atoms]. The population-weighted sums of the computed VCD spectra of the conformers are in excellent agreement with the experimental VCD spectra. The combination of the VCD and ECD spectroscopic methods led us to the structural characterization of the complexes.  相似文献   

7.
Noncovalent interactions of poly(L-lysine) (PL), oligopeptides L-lysyl-L-alanyl-L-alanine and (L-lysyl-L-alanyl-L-alanine)(2) with meso-tetrakis(4-sulfonatophenyl)porphine (TPPS), and poly(L-glutamic acid) (PLGA) with meso-tetrakis(1-methyl-4-pyridyl)porphine tetra-p-tosylate (TMPyP) in aqueous solutions have been studied using combination of spectroscopic methods: Vibrational circular dichroism (VCD) spectroscopy in the mid-infrared region provides a direct information on conformational changes of the polypeptides and oligopeptides caused by interactions with porphyrins; ultraviolet-visible absorption, fluorescence, and electronic circular dichroism (ECD) reveal the aggregation characterization of the porphyrin part of the complexes. Interactions of TPPS with tripeptide, hexapeptide, and PL containing about ten amino acid residues in the molecular chain are accompanied with the changes of VCD patterns in the amide I' region. In these cases, the conformation of the oligopeptide part of complexes is obviously influenced by interactions with TPPS and partial changes of random coil structure are observed in VCD. When PL was composed of the hundreds of lysine residues, just a weak intensity decrease was detected and the shape of VCD spectrum typical for the random coil structure was preserved. As follows from the uv-vis absorption and fluorescence spectra, porphyrin molecules are attached to peptides by electrostatic interaction as a monomer or dimer and interaction between porphyrin and peptide depends on the polypeptide chain length. For the PLGA-TMPyP system with PLGA containing from tens to hundreds of glutamic acid residues in the chain, the VCD spectra were unchanged when TMPyP was presented in the aqueous solution of PLGA and random coil conformation of PLGA-TMPyP aggregates was preserved.  相似文献   

8.
L Wang  L Yang    T A Keiderling 《Biophysical journal》1994,67(6):2460-2467
Vibrational circular dichroism (VCD) spectra were measured for H2O solutions of several natural and model DNAs (single and double strands, oligomers and polymers) in the B-form, poly(dG-dC)-poly(dG-dC) in the Z-form, and various duplex RNAs in an A-form over the PO2-stretching region. Only the symmetric PO2 stretch at approximately 1075 cm-1 yields a significant intensity VCD signal. Differences of the PO2-stretching VCD spectra found for these conformational types are consistent with the spectral changes seen in the base region, but no sequence dependence was seen in contrast to VCD for base modes. The B to Z transition is accompanied by an inversion of the PO2- VCD spectra, which is characteristic of the change in the helical sense of the nucleic acid backbone. A-RNAs give rise to the same sense of couplet VCD as do B-DNAs but have a somewhat different shape because of overlapping ribose modes. These PO2- VCD spectral characteristics have been successfully modeled using simple dipole coupling calculations. The invariability of the symmetric PO2- stretching mode VCD spectra to the base sequence as opposed to that found for the C = O stretching and base deformation modes is evidence that this mode will provide a stable indication of the DNA helical sense.  相似文献   

9.
In the present work, we report a comprehensive vibrational circular dichroism (VCD) spectroscopic study of a chiral crown ether which features an axial chiral 3.3'‐diphenyl‐1,1'‐binaphthyl group as chiral moiety. By comparing the experimental and calculated VCD spectra, we show that the presumably very flexible crown ether preferably adopts only one ring conformation. Conformational flexibility is observed in the 2,4‐dinitrophenyl‐diazophenol group, which was previously introduced for colorimetric detection of primary amines and amino alcohols (Cho et al., Chirality 2011;23:349–353). The VCD spectra of the host–guest complexes with phenyl glycinol (PG) and phenyl alaninol have been studied as well. Based on the spectra calculated, it is shown that the diastereomeric complexes in general can be differentiated using VCD spectroscopy. Furthermore, the experimental VCD spectra of the complexes of the host molecule with PG support the above finding. Chirality 25:294–300, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectra of both enantiomers of naringenin (4',5,7-trihydroxyflavanone) in acetonitrile solution have been measured. The enantiomers were obtained by chiral HPLC separation of the racemic sample. DFT calculations have been performed for relevant conformers and subsequent evaluations of VCD spectra are compared with VCD experiments: safe assignment of the absolute configuration is provided, based in particular on the VCD data. The relevance of the rotational conformers of the hydroxyl groups and of the mobility of phenol moiety is studied: based on this, we provide a first interpretation of the observed intense and broad couplet at 1325/1350 cm(-1). Four conformers contribute to this pattern with different sign and amplitude as shown by DFT calculations. Time dependent DFT calculations have been performed and compared with ECD experimental data, under the same assumption of conformational properties and mobilities investigated by VCD.  相似文献   

11.
One- and two-dimensional NMR spectroscopy was used to demonstrate the formation of inclusion cyclodextrin complexes with several A-007 prodrugs. These complexes are comprised from the encapsulation of the two phenol moieties of the A-007 prodrugs within the cyclodextrin cavity. Considering the size of the two phenol moieties of the A-007 prodrugs compared to the sizes of alpha-, beta-, and gamma-cyclodextrin cavities, we observed complementary binding of the A-007 prodrug with only beta-cyclodextrin, which was also demonstrated spectroscopically. The beta-cyclodextrin inclusion complexes increased the prodrug solubility and modified the prodrug half-life in water. Therefore, beta-cyclodextrin inclusion complexes can be used as an essential form of A-007 prodrug delivery.  相似文献   

12.
Vibrational circular dichroism (VCD) spectroscopy was used to investigate the solution conformations of cyclosporins A, C, D, G, and H in CDCl(3), in the amide I and NH/OH-stretching regions, and their corresponding magnesium complexes in CD(3)CN, in the amide I region. VCD spectra are sensitive to the chiral arrangement of Cdbond;O and NH bonds in this cyclic undecapeptide. Calculations of molecular geometries, as well as IR and VCD intensities of model cyclosporin fragments that include the intramolecular hydrogen bonds of the crystal conformations of cyclosporins A and H (CsA and CsH), were carried out at the density functional theory (DFT; BPW91 functional/6-31G* basis set) level. The good agreement between IR and VCD spectra from experiment and DFT calculations provides evidence that the crystal conformation of CsA is dominant in CDCl(3) solution; CsH, however, assumes both an intramolecularly hydrogen-bonded crystal conformation and more open forms in solution. Comparisons of the experimental and calculated VCD spectra in the NH/OH-stretching region of the noncomplexed cyclosporins indicate that conformers with both free and hydrogen-bonded NH and OH groups are present in solution. Differences between the IR and VCD spectra for the metal-free and magnesium-complexed cyclosporins are indicative of strong interactions between cyclosporins and magnesium ions.  相似文献   

13.
The solution structures of (3R,4S)- and (3S,4R)- 4-(4-fluorophenyl)-3-hydroxylmethyl- 1-methylpiperidine, which are intermediates in the synthesis of the two pharmaceuticals paroxetine and femoxetine, were studied by vibrational circular dichroism (VCD) spectroscopy. In addition, six derivatives with different substituents attached to the C3 atom were prepared and their VCD and absorption spectra discussed with the aid of ab initio simulations. The VCD spectra were found to be sensitive to the geometry changes. In addition, a subtle variation caused by intermolecular aggregation was apparent in the spectra. The VCD technique can be applied for structural analysis of chiral pharmaceuticals in solutions.  相似文献   

14.
The chiroptical response in the form of vibrational circular dichroism (VCD) in the midinfrared region is found to be enhanced when a hydrogen of amino group of l -tryptophan is substituted with acetyl, acryloyl, or maleyl group. The order of preference for VCD enhancement is found to be acryloyl > acetyl > maleyl group. The resulting experimental VCD spectra are also found to be satisfactorily reproduced by the quantum mechanical (QM) predicted spectra. The QM predicted spectra were simulated using the conformer populations, (a) predicted by Gibbs energies and (b) optimized to maximize the similarity between experimental and predicted VCD spectra. It is found that the conformer populations predicted by Gibbs energies do not yield the maximum possible similarity between experimental and the QM predicted spectra. This work identifies the N-substitution of α-amino acids and determining the conformer populations that best reproduce the experimental spectra as two new approaches for molecular structure determination.  相似文献   

15.
The effects of chiral discrimination in inclusion complexes formed by native β-cyclodextrin and its substituted form (namely methyl-β-cyclodextrin) with racemate or pure enantiomers of the non-steroidal anti-inflammatory drug ibuprofen have been investigated in water. Stability constants and complexation efficiency have been determined for these host–guest systems with a 1:1 molar ratio from phase solubility profiles, showing that in aqueous solution, methylated cyclodextrin is a better complex agent than native cyclodextrin, with more enhanced effects for the (R)-enantiomer. These results have been validated using NMR technique. In particular, 1H NMR spectra in D2O show a splitting of the signals for the methyl group and the aromatic protons close to the asymmetric centre of the racemate ibuprofen included in cyclodextrin cavity.  相似文献   

16.
Measurements of the equilibrium and temperature-jump u.v., visible, and induced c.d. spectra of Methyl Orange (MO) in the presence of cyclomalto-octaose (γ-cyclodextrin, γ-CD) have been carried out. Three mechanistic steps were detected through the temperature-jump data (25.0°):
where K1, K2, and K3 are 45 (±7), 2.0 (±1.1) × 106, and 6.1 (±2.5) × 103 dm3.mol?1, respectively, k2 = 9.4 (±5.1) × 109 dm3.mol?1.s?1, and k?2 = 4.8 (±0.8) × 103 s?1. The equilibrium u.v./visible data are also consistent with this reaction scheme. The high stability of the dimer inclusion complex (MO)2 · γ-CD compared to that of the monomer inclusion complex MO · γ-CD appears to be related to the annular diameter of γ-CD and demonstrates a degree of selectivity in cyclodextrin inclusion complexes. The (MO)2 · (γ-CD)2 complex also contains a dimer, included by both γ-CD molecules.  相似文献   

17.
Kahle C  Holzgrabe U 《Chirality》2004,16(8):509-515
Cyclodextrins are well known for their ability to separate enantiomers of drugs, natural products, and other chiral substances using HPLC, GC, or CE. The resolution of the enantiomers is due to the formation of diastereomeric complexes between the cyclodextrin and the pairs of enantiomers. The aim of this study was to determine the binding constants of the complexes between alpha- and beta-cyclodextrin and the enantiomers of a series of aliphatic and aromatic amino acids, and dipeptides, using a potentiometric titration method. The results of this method are compared to other methods, and correlated to findings in cyclodextrin-modified capillary electrophoresis and possible complex structures. Potentiometric titration was found to be an appropriate tool to determine the binding constants of cyclodextrin inclusion complexes.  相似文献   

18.
The main objective of this work was to increase the solubility of sulfadiazine by formation of inclusion complexes with β-cyclodextrin, and methyl-β-cyclodextrin. The apparent stability constants have been determined by phase solubility studies in water and buffer solutions of pH values of 2 and 8. The stoichiometry of all complexes was found to be 1:1 but different relative affinities were found for each cyclodextrin. It was possible to obtain a greater overall solubility by using a combined approach of pH adjustment and complexation with cyclodextrins. Guest-host interactions have been investigated using nuclear magnetic resonance. Complexes were prepared in solid state by different methods and were characterized using differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. The dissolution rate of the drug from the inclusion complex made by freeze-dried was much faster than this of the pure drug.  相似文献   

19.
A series of bridled chiroporphyrins (BCP) and their metal complexes were prepared, in which two n‐methylene straps connect adjacent meso substituents by ester linkages. These compounds can exist as four atropisomers (αααα, αβαβ, αααβ, or ααββ) depending on the position of the meso groups relative to the macrocycle (α when above and β when below). We characterized the conformation of these chiral porphyrins and their metal (Zn, Ni, Mn) complexes by vibrational circular dichroism (VCD) associated with ab initio calculations. VCD spectra of the three metalloporphyrins were recorded in CDCl3 and benzene solutions and ab initio calculations of their four atropoisomers were performed at the Density Functional Theory (DFT) level. The bridled chiroporphyrin with the longer straps (9 CH2) and its nickel(II) complex can be isolated as the αβαβ atropisomer in the solid state and were found with the same conformation in CDCl3 and benzene solutions. The bridled chiroporphyrin with the shortest straps (8 CH2) and its zinc(II) complex can be isolated as the αααα atropisomer in the solid state, but in solution they are subject to atropisomeric equilibria, resulting in atropisomer distributions that are strongly solvent‐dependent. Comparison of the experimental VCD spectra with the predicted spectra of the four atropisomers allowed the quantification of these distributions. Finally, the manganese(III) complex also exhibits an atropisomeric equilibria in solution which is slightly solvent‐dependent. Chirality 25:480–486, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Wen X  Liu Z  Zhu T  Zhu M  Jiang K  Huang Q 《Bioorganic chemistry》2004,32(4):223-233
Cinchonine (Cin) is the primary drug of choice in the treatment of malaria, but its poor solubility has restricted its use via the oral route. Cyclodextrins (CDs) form inclusion complexes with cinchonine to form soluble complexes. This interaction was investigated by solubility studies, electrospray ionization mass spectrometry (ESI-MS), and molecular modeling. ESI-MS evaluated successfully the nature of the solution-phase inclusion complexes. The experimental results showed that not only 1:1, but also stable 2:1 inclusion complexes can be formed between CDs and Cin. Multi-component complexes of beta-CD-Cin-beta-CD (1:1:1), gamma-CD-Cin-gamma-CD (1:1:1), and beta-CD-Cin-gamma-CD (1:1:1) were found in equimolar beta- and gamma-CD mixtures with Cin. The formation of 2:1 and multi-component 1:1:1 non-covalent CD-Cin complexes indicates that beta- and gamma-CD are able to form sandwich-type inclusion complexes with Cin in high concentrations. The phase-solubility diagram showed non-linear type A(p) profile, indicating that more than one cyclodextrin molecule is involved in the complexation of one guest molecule. Molecular modeling calculations have been carried out to rationalize the experimental findings and predict the lowest energy molecular structure of inclusion complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号