首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Ultrasound effect on gramicidin incorporation into a bilayer lipid membrane has been investigated. The observed increase in the channel opening frequency points to the incorporation rate growth due to the thickness diminishing of near-membrane non-stirred layers. The dependence of ultrasound intensity on the layer thickness is presented.  相似文献   

2.
Brief closures of gramicidin A channels in lipid bilayer membranes   总被引:5,自引:0,他引:5  
Brief closures, so called flickers, gramicidin A channels were observed for glycerol monooleate/n-decane membranes for cesium chloride and hydrochloric acid solutions. The flickers, similar in nature to the flickers observed for physiological channels, were of the order of 1 ms and the interval between flickers was of the order of 50 ms. The flicker-duration and interval between flickers both decrease with voltage. The field dependence of the flickers is consistent with the hypothesis that the membrane forms a dimple when accomodating a dimer in the membrane and that the monomers, on breaking up, are associated over displacements of the order of 2 nm. For similar measurements for glycerol monoleate/hexadecane membranes only rare occurrences of flickers were observed. It is suggested that the flicker phenomenon is governed by the physical and chemical properties of the membrane and the influence of membrane thickness and interfacial free energy is emphasized.  相似文献   

3.
Summary Previous studies have given evidence that the active form of gramicidin A in lipid bilayer membranes is a dimer which acts as an ion channel; it has been further shown that the mean lifetime of the channel strongly depends on the membrane thickness. As the thickness slightly decreases when a voltage is applied to the membrane, the equilibrium between conducting dimers and nonconducting monomers may be displaced by a voltage jump. From the relaxation of the electrical current after the voltage jump, information about the kinetics of channel formation is obtained. For a dioleoyllecithin/n-decane membrane the rate constant of association is found to be 2×1014 cm2 mole–1 sec–1, which is by three orders of magnitude below the limiting value of a diffusion-controlled reaction in a two-dimensional system. The dissociation rate constant is equal to 2 sec–1, a value which is consistent with the channel lifetime as obtained from electrical fluctuation measurements.  相似文献   

4.
5.
In membranes containing aqueous pores (channels), the osmotic water permeability coefficient, P f, is greater than the diffusive water permeability coefficient, P d. In fact, the magnitude of P f/P d is commonly used to determine pore radius. Although, for membranes studied to date, P f/P d monotonically declines with decreasing pore radius, there is controversy over the value it theoretically assumes when that radius is so small that water molecules cannot overtake one another within the channel (single-file transport). In one view it should equal 1, and in another view it should equal N, the number of water molecules in the pore. Gramicidin A forms, in lipid bilayer membranes, narrow aqueous channels through which single-file transport may occur. For these channels we find that P f/P d approximately 5. In contrast, for the wider nystatin and amphotericin B pores, P f/P d approximately 3. These findings offer experimental support for the view that P f/P d = N for single-file transport, and we therefore conclude that there are approximately five water molecules in a gramicidin A channel. A similar conclusion was reached independently from streaming potential data. Using single-channel conductance data, we calculate the water permeability of an individual gramicidin A channel. In the Appendix we report that there is a wide range of channel sizes and lifetimes in cholesterol-containing membranes.  相似文献   

6.
Gramicidin A was dimerized with carbonsuboxide as bifunctional reagent. The effect of the resulting malonyl-bis-desformylgramicidin on lipid bilayer membranes was investigated and compared with the effect of the monomer gramicidin. It was found that the single channel conductance and the ion selectivity are very similar to the behaviour of the monomer molecule, whereas the channel forming kinetics and the life time of the single channel of the malonyl-bis-desformylgramicidin differ strongly from the behaviour of the monomer gramicidin.The electrical relaxations are very small and possibly associated with some structural changes of the membrane after a voltage jump. The single channel lifetime of the malonyl-bis-desformylgramicidin is measured in minutes, whereas for the same lipid system the single channel lifetime in the case of the monomer gramicidin is restricted to 1–2 s. It is concluded that the malonyl-bis-desformylgramicidin-molecule itself (as a single molecule) forms an ionic channel without further association.  相似文献   

7.
Gramicidin A was dimerized with carbonsuboxide as bifunctional reagent. The effect of the resulting malonyl-bis-desformylgramicidin on lipid bilayer membranes was investigated and compared with the effect of the monomer gramicidin. It was found that the single channel conductance and the ion selectivity are very similar to the behaviour of the monomer molecule, whereas the channel forming kinetics and the life time of the single channel of the malonyl-bis-desformylgramicidin differ strongly from the behaviour of the monomer gramicidin. The electrical relaxations are very small and possibly associated with some structural changes of the membrane after a voltage jump. The single channel lifetime of the malonyl-bis-desformylgramicidin is measured in minutes, whereas for the same lipid system the single channel lifetime in the case of the monomer gramicidin is restricted to 1-2 s. It is concluded that the malonyl-bis-desformylgramicidin-molecule itself (as a single molecule) forms an ionic channel without further association.  相似文献   

8.
A new method for evaluating chemical selectivity of agonists to activate the N-methyl-D-aspartate (NMDA) receptor was presented by using typical agonists NMDA, L-glutamate and (2S, 3R, 4S)-2-(carboxycyclopropyl)glycine (L-CCG-IV) and the mouse epsilon1/zeta1 NMDA receptor incorporated in bilayer lipid membranes (BLMs) as an illustrative example. The method was based on the magnitude of an agonist-induced integrated single-channel current corresponding to the number of total ions passed through the open channel. The very magnitudes of the integrated single-channel currents were compared with the different BLMs as a new measure of agonist selectivity. The epsilon1/zeta1 NMDA receptor was partially purified from Chinese hamster ovary (CHO) cells expressing the epsilon1/zeta1 NMDA receptor and incorporated in BLMs formed by the tip-dip method. The agonist-induced integrated single-channel currents were obtained at 50 microM agonist concentration, where the integrated current for NMDA was shown to reach its saturated value. The obtained integrated currents were found to be (4.5 +/- 0.55) x 10(-13) C/s for NMDA, (5.8 +/- 0.72) x 10(-13) C/s for L-glutamate and (6.6 +/- 0.61) x 10(-13) C/s for L-CCG-IV, respectively. These results suggest that the agonist selectivity in terms of the total ion flux through the single epsilon1/zeta1 NMDA receptor is in the order of L-CCG-IV approximately = L-glutamate > NMDA.  相似文献   

9.
The exchange diffusions of tracer cations (22Na+, 86Rb+) are studied on gramicidin-A-treated red blood cell (RBC) membranes. A time-dependent decrease in cation permeability has been observed and has been considered to be the result of a channel inactivation process. The channel inactivation appears at 20 and 30 degrees C but not at a temperature as low as 6 degrees C. The gramicidin A channel inactivation can be monitored by a conductivity decay of molecular lipid membranes (BLM) prepared either from cholesterol or from a mixture of cholesterol and phospholipids but not of pure phosphatidylethanolamine. The role of cholesterol in the channel inactivation is discussed.  相似文献   

10.
The effect of cyclic decapeptide of gramicidin S on electrical conductivity of bilayer lipid membranes has been studied. The integral conductivity of bilayer has been shown to increase with the growth of antibiotic concentration. The integral conductivity increase occurs as series of conductivity discrete leaps, differing in amplitude from fluctuations of conductivity caused by linear gramicidins. In the series of selectivity of bilayer membranes for cations of alkaline metals the rubidium ion is before the cesium ion. This is the only difference between this series and the series of relative ionic mobility series of cations of alkaline metals in water solutions.  相似文献   

11.
Measurements have been made of gramicidin single-channel lifetimes in monoacylglycerol bilayers chosen so that their thickness ranged from above to below the length of the gramicidin channel. Contact angles, electrical capacities and bulk-phase interfacial tensions have also been determined for these systems. The mean channel lifetime decreased with the hydrocarbon thickness of the membrane until the latter reached 2.2 nm, after which the lifetime was relatively constant. A theoretical model has been proposed which relates the mean channel lifetime (or dissociation constant) to both the thickness and the tension of the bilayers. The analysis of the present results and of those of previous studies has led to the idea that aggregates of water molecules may play an important r?le in the dissociation of the gramicidin channel.  相似文献   

12.
Mechanoelectrical transduction in gramicidin A channels was studied in macroscopic planar lipid bilayer membranes bulged at constant tension. We found a supralinear increase in the single channel activity that was proportional to the square of membrane radius, but could not be accounted for by the increase in membrane surface area, or by recruitment of new channels. Extrapolated to biological membranes, these observations may suggest that the permeability of ion channels can be influenced simply by changing shape of the membrane, with or without stretching. Published in Russian in Biofizika, 2006, Vol. 51, No. 6, pp. 1014–1018. The text was submitted by the authors in English.  相似文献   

13.
Summary Expressions are derived for the decrease of the conductivity of lipid bilayer membranes caused by diffusion polarization in the aqueous solutions near the membrane. It is assumed that after a sudden change in the voltage or current, the reestablishment of the stationary state within the membrane is fast as compared to the change of ion concentration in the solutions. The time course of the diffusion polarization, then, can be calculated for experiments where either the voltage or the current are controlled. Criteria are given to distinguish diffusion polarization from other relaxation processes, and several limiting cases of experimental interest are discussed.  相似文献   

14.
Mechanoelectrical transduction in gramicidin A channels was studied in macroscopic planar lipid bilayer membranes bulged at constant tension. We found a supralinear increase in the single channel activity, which was proportional to the square of membrane radius but could not be accounted for by the increase in membrane surface area or by recruitment of new channels. When being extrapolated to biological membranes, these observations may suggest that the activity of permeability of ion channels can be influenced simply by changing the shape of the membrane, with or without stretching.  相似文献   

15.
16.
17.
Ion-channel activity of a series of gramicidin A analogues carrying charged amino-acid sequences on the C-terminus of the peptide was studied on planar bilayer lipid membranes and liposomes. It was found that the analogue with the positively charged sequence GSGRRRRSQS forms classical cationic pores at low concentrations and large unselective pores at high concentrations. The peptide was predominantly in the right-handed beta(6.3)-helical conformation in liposomes as shown by circular dichroism spectroscopy. The single-channel conductance of the large pore was estimated to be 320pS in 100mM choline chloride as judged from the fluctuation analysis of the multi-channel current. The analogue with the negatively charged sequence GSGEEEESQS exhibited solely classical cationic channel activity. The ability of a peptide to form different type of channels can be used in the search for broad-spectrum antibiotics.  相似文献   

18.
For very narrow channels in which ions and water cannot overtake one another (single-file transport), electrokinetic measurements provide information about the number of water molecules within a channel. Gramicidin A is believed to form such narrow channels in lipid bilayer membranes. In 0.01 and 0.1 M solutions of CsCl, KCL, and NaCl, streaming potentials of 3.0 mV per osmolal osmotic pressure difference (created by urea, glycerol, or glucose) appear across gramicidin A-treated membranes. This implies that there are six to seven water molecules within a gramicidin channel. Electroosmotic experiments, in which the water flux assoicated with current flow across gramicidin-treated membranes is measured, corroborate this result. In 1 M salt solutions, streaming potentials are 2.35 mV per osmolal osmotic pressure difference instead of 3.0 mV. The smaller value may indicate multiple ion occupancy of the gramicidin channel at high salt concentrations. Apparent deviations from ideal cationic selectivity observed while attempting to measure single-salt dilution potentials across gramicidin-treated membranes result from streaming potential effects.  相似文献   

19.
If a membrane contains ion-conducting channels which form and disappear in a random fashion, an electric current which is passed through the membrane under constant voltage shows statistical fluctuations. Information on the kinetics of channel formation and on the conductance of the single channel may be obtained by analyzing the electrical noise generated in a membrane containing a great number of channels. For this purpose the autocorrelation function of the current noise is measured at different concentrations of the channel-forming substance. As a test system for the application of this technique we have used lipid bilayer membranes doped with gramicidin A. From the correlation time of the current noise generated by the membrane, the rate constants of formation (k-R) and dissociation (k-D) of the channels could be determined. In addition, the mean square of the current fluctuations yielded the single-channel conductance lambda. The values of k-R, k-D, and lambda obtained from the noise analysis agreed closely with the values determined by relaxation measurments and single-channel experiments.  相似文献   

20.
Tethered bilayer lipid membranes (tBLMs) are promising model architectures that mimic the structure and function of natural biomembranes. They provide a fluid, stable, and electrically sealing platform for the study of membrane related processes, specifically, the function of incorporated membrane proteins. This paper presents a generic approach toward the synthesis of functional tBLMs adapted for application to various surfaces. The central element of a tethered membrane consists of a lipid bilayer. Its proximal layer is covalently attached via a spacer unit to a solid support, either gold or silicon oxide. The membranes are characterized optically by using surface plasmon resonance spectroscopy (SPR) or ellipsometry and electrically by using electrochemical impedance spectroscopy (EIS). The bilayer membranes obtained show high electrical barrier properties and can be used to incorporate and study small membrane proteins in a functional form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号