首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Summary An NTG induced mutant of a bile acid utilizing strain of Pseudomonas putida was isolated which was blocked in the steroid catabolic pathway. This mutant (PS5-7) was able to accumulate both phenolic and catecholic secosteroid products from cholic acid. Using a transposing system containing the kanamycin resistance transposon Tn5, mutants of PS5-7 were isolated which produced only the phenolic secosteroid. One of these mutants (PS5-25) was able to produce close to theoretical yields of various phenolic secosteroids from corresponding bile acids.  相似文献   

2.
1. The binding of cholic acid to 100000g supernatants from rat livers was investigated by equilibrium dialysis and gel-exculsion chromatography. 2. Supernatants were found to contain at least two classes of binding site for cholic acid. 3. These recptor molecules are probably proteins since incubation with proteolytic enzymes resulted in complete loss of cholic acid binding. 4. Supernatants were added to columns of Sephadex G-75, and two groups of fractions were shown to bind cholic acid. One of these contained low-affinity binding sites and the other contained both low- and high-affinity binding sites. 5. Feeding cholestyramine had no effect on cholic acid binding. 6. Increased cholic acid binding occurred after injection of phenobarbitone. There was an increase in the amount of the low-affinity component but no change in the high-affinity component. 7. The dissociation constants of the binding of cholic acid suggest that the binding proteins may be involved in bile acid transport.  相似文献   

3.
We used capillary gas chromatography/mass spectrometry to demonstrate that a cell line derived from a well differentiated human hepatoblastoma, HepG2, synthesized and secreted the following bile acids (ng/10(7) cells/h): chenodeoxycholic acid (131.4), cholic acid (3.3), 3 alpha, 7 alpha-dihydroxy-5 beta-cholestan-26-oic acid (DHCA; 4.5), and 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid (THCA; 32.0). Deuterium from [7 beta-2H]7 alpha-hydroxycholesterol, which was added to the media, was incorporated into newly synthesized chenodeoxycholic acid, DHCA, and THCA, but not into cholic acid. Since THCA is a known precursor of cholic acid, these data suggest that HepG2 is specifically deficient in the side chain cleavage that transforms THCA into cholic acid. Greater than 90% of the bile acids synthesized and secreted by HepG2 were unconjugated. Conjugation could not be stimulated by the addition of glycine or taurine to the media. Approximately 30% of newly synthesized DHCA and THCA were sulfated. Chenodeoxycholic acid and cholic acid were not appreciably sulfated. In summary, cultured HepG2 cells synthesize bile acid, but in a pattern distinct from that of adult human liver. This cell line may be a model for studying pathways of human bile acid synthesis, conjugation, and sulfation.  相似文献   

4.
Synthesis of the specific monosulfates of cholic acid.   总被引:1,自引:0,他引:1  
G Parmentier  H Eyssen 《Steroids》1975,26(6):721-729
The three isomeric cholic acid-monosulfates were synthetized and characterized. Cholic acid-3-sulfate was obtained by reacting cholic acid for 2 min with chlorosulfonic acid in pyridine and chromatography of the resulting bile salt mixture on Sephadex LH-20. The 7- and the 12-monosulfate were prepared by sulfation of the corresponding monohydroxy-diacetates followed by removal of the acetyl groups by alkaline hydrolysis and purification by chromatography on Sephadex LH-20. On TLC in n-butanol-acetic acid-water (10:1:1, v/v) the Rf values were 0.59 for cholic acid-3-sulfate, 0.52 for cholic acid-7-sulfate and 0.48 for cholic acid-12-sulfate. The time required for complete solvolysis at 37 degrees C in acid methanol-acetone (1:9) was 3 h for cholic acid-3-sulfate, 12 h for the 12-monosulfate and 18 h for the 7-monosulfate.  相似文献   

5.
We examined the effect of the type of cholic acid conjugation (taurine-conjugated, glycine-conjugated, or unconjugated cholic acid) on cholic acid 7 alpha-dehydroxylation by intestinal flora. Cholic acid 7 alpha-dehydroxylation in fecal cultures, in cultures of a defined limited flora consisting of a mixture of seven bacterial species isolated from the intestinal tract, and in a binary culture of a 7 alpha-dehydroxylating Clostridium species plus a cholic acid-deconjugating Bacteroides species was studied. We found that tauroconjugation of cholic acid significantly (P < 0.05) increased bacterial 7 alpha-dehydroxylation of cholic acid into deoxycholic acid from 34 to 55% in fecal cultures, from 45 to 60% in defined limited fecal cultures, and from 75 to 100% in binary cultures. Equimolar concentrations of free taurine did not stimulate 7 alpha-dehydroxylation in fecal cultures or in the defined limited flora, but free taurine did stimulate 7 alpha-dehydroxylation in the binary culture. In the binary culture of Clostridium species strain 9/1 plus Bacteroides species strain R1, the minimal flora capable of increased 7 alpha-dehydroxylation of taurocholic acid, strain R1 deconjugated taurine and rapidly reduced it to H2S. Bacteroides species strain R1 did not grow unless taurine or another appropriate reducible sulfur source was present. Clostridium species strain 9/1 did not grow or 7 alpha-dehydroxylate unless H2S or another source of reduced sulfur was present. We conclude that the increased 7 alpha-dehydroxylation of tauroconjugated cholic acid depends on the reduction of taurine to H2S, which is a necessary growth factor for the 7 alpha-dehydroxylating bacteria.  相似文献   

6.
The rate of 7alpha-dehydroxylation of primary bile acids was quantitatively measured radiochromatographically in anaerobically washed whole cell suspensions of Clostridium leptum. The pH optimum for the 7alpha-dehydroxylation of both cholic and chenodeoxycholic acid was 6.5-7.0. Substrate saturation curves were observed for the 7alpha-dehydroxylation of cholic and chenodeoxycholic acid. However, cholic acid whole cell K0.5 (0.37 micron) and V (0.20 mumol hr-1mg protein-1) values differed significantly from chenodeoxycholic acid whole cell K0.5 (0.18 micron) and V (0.50 mumol-1 hr-1 mg protein-1). 7alpha-Dehydroxylation activity was not detected using glycine and taurine-conjugated primary bile acids, ursodeoxycholic acid, cholic acid methyl ester, or hyocholic acid as substrates. Substrate competition experiments showed that cholic acid 7 alpha-dehydroxylation was reduced by increasing concentrations of chendeoxycholic acid; however, chenodeoxycholic acid 7alpha-dehydroxylation activity was unaffected by increasing concentrations of cholic acid. A 10-fold increase in cholic and 7alpha-dehydroxylation activity occurred during the transition from logarithmic to stationary phase growth whether cells were cultured in the presence or absence of sodium cholate. In the same culture, a similar increase in chenodeoxycholic acid 7alpha-dehydroxylation was detected only in cells cultured in the presence of sodium cholate. These results indicate the possible existence of two independent systems for 7alpha-dehydroxylation in C. Leptum.  相似文献   

7.
The effect of dietary 7 beta-methyl-cholic acid [0.075% in rodent chow (6.4 mg/animal per day)] on cholesterol and bile acid metabolism was studied and compared with that of cholic acid in the hamster. Following oral administration of 7 beta-methyl-cholic acid for 3 weeks, the glycine-conjugated bile acid analog became a major constituent of gallbladder bile. Biliary cholic acid concentration decreased significantly, while that of chenodeoxycholic acid remained unchanged. Serum and liver cholesterol levels were increased by dietary 7 beta-methyl-cholic acid and by cholic acid. Hepatic microsomal HMG-CoA reductase activity was inhibited (30% of the control value) by both bile acids; cholesterol 7 alpha-hydroxylase activity was not affected. In chow controls and cholic acid-fed animals, bacterial 7-dehydroxylation of [14C]chenodeoxycholic acid and [14C]cholic acid was nearly complete. In contrast, dietary 7 beta-methyl-cholic acid effectively prevented the 7-dehydroxylation of the two primary bile acids. These results show that dietary 7 beta-methyl-cholic acid is preserved in the enterohepatic circulation and has an effect on serum and liver cholesterol concentrations similar to those produced by the naturally occurring cholic acid. 7 beta-Methyl-cholic acid is an efficient inhibitor of the bacterial 7-dehydroxylation of the primary bile acids in the hamster.  相似文献   

8.
The in vivo conversion of several 5 beta-cholestane intermediates to primary bile acids was investigated in three patients with total biliary diversion. The following compounds were administered intravenously: 5 beta-[G-3H]-cholestane-3 alpha, 7 alpha-diol, 5 beta-[G-3H]cholestane-3 alpha, 7alpha, 26-triol, and 5 beta-[24-14C]cholestane-3 alpha, 7 alpha-25-triol. Bile was then collected quantitatively at frequent intervals for the next 21 to 28 h. The administered 5 beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol was found to be efficiently converted to cholic and chenodeoxycholic acids in two patients; 61 and 75% of the administered label was found in primary bile acids. The proportion of labeled cholic to chenodeoxycholic acid was 1.20 and 1.02 in the bile of these patients, indicating that the C-26 triol was efficiently converted to cholic acid. The ratio of cholic to chenodeoxycholic acid (mass) in the bile of these patients was 1.23 and 2.32. The 5 beta-cholestane-3alpha, 7alpha-diol intermediate was also efficiently converted (71%) to both primary bile acids. The cholic to chenodeoxycholic acid ratios by mass and label were similar (2.97 versus 2.23). By contrast, the 5beta-cholestane-3alpha, 7alpha, 25-triol was poorly converted to bile acids in three patients. Following the administration of this compound almost all of the administered radioactivity found in the bile acid fraction was in cholic acid (5 to 19%) and very little (less than 5%) was found in chenodeoxycholic acid. These findings indicate that ring hydroxylation at position 12 is not materially hindered by the presence of a hydroxyl group on the side chain at C-26 in patients with biliary diversion. The labeled C-26-triol which was efficiently converted to both primary bile acids in a proportion similar to that which was observed for the bile acids synthesized by the liver suggests that this 5beta-cholestane derivative may be a major intermediate in the synthesis of both cholic and chenodeoxycholic acids.  相似文献   

9.
Bile acids have been separated by high-pressure liquid chromatography. The free acids were derivatized to their phenacyl esters by treatment with triethylamine and α-bromoacetophenone. The stationary phase was a C18, Partisil ODS column. A dual-solvent, stepwise gradient system was used for the mobile phase. The method is applied to a human bile sample and shows excellent resolution of the dihydroxy bile acid phenacyl esters. Detection limits for pure derivatized bile acids are 10–20 pmol (5–10 ng), except for the cholic acid derivative, which has a detection limit of 265 pmol.  相似文献   

10.
Y Ayaki  Y Ogura  S Kitayama  S Endo  M Ogura 《Steroids》1983,41(4):509-520
Some difference in functional pool of cholesterol acting as the precursor of bile acids is pointed out between cholic acid and chenodeoxycholic acid. In order to elucidate this problem further, some experiments were performed with rats equilibrated with [7(n)-3H, 4-(14)C] cholesterol by subcutaneous implantation. The bile duct was cannulated in one series of experiments and ligated in another. After the operation 14C-specific radioactivity of serum cholesterol fell, but reached practically a new equilibrium within three days. 14C-Specific radioactivity of serum cholesterol as well as of biliary bile acids in bile-fistula rats and urinary bile acids in bile duct-ligated rats was determined during a three days-period in the new equilibrated state. The results were as follows: (1) 14C-Specific radioactivity of cholic acid and chenodeoxycholic acid in bile was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was clearly lower than that of chenodeoxycholic acid. (2) 14C-Specific radioactivity of cholic acid and beta-muricholic acid in urine was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was lower than that of beta-muricholic acid. (3) Biliary as well as urinary beta-muricholic acid lost tritium label at 7-position entirely during the course of formation from [7(n)-3H, 4-(14)C]cholesterol.  相似文献   

11.
The extent of oxidoreduction of the 3 alpha-, 7 alpha- and 12 alpha-hydroxyl groups in bile acids during the enterohepatic circulation in man was studied with the use of [3 beta-3H]-labeled deoxycholic acid and cholic acid, [7 beta-3H]-labeled cholic acid, and [12 beta-3H]-labeled deoxycholic acid and cholic acid. Each [3H]-labeled bile acid was given per os to healthy volunteers, together with the corresponding [24-14C]-labeled bile acid. The rate of oxidoreduction was calculated from the decrease in the ratio between 3H and 14C in the respective bile acid isolated from duodenal contents collected at different time intervals after administration of the labeled bile acids. The mean fractional conversion rate was found to be 0.29 day-1 for the 3 alpha-hydroxyl group in deoxycholic acid (n = 2), 0.18 day-1 for the 12 alpha-hydroxyl group in deoxycholic acid (n = 6), 0.09 day-1 for the 3 alpha-hydroxyl group in cholic acid (n = 3), 0.05 day-1 for the 7 alpha-hydroxyl group in cholic acid (n = 2), and 0.03 day-1 for the 12 alpha-hydroxyl group in cholic acid (n = 2). The extent of oxidoreduction of the 12 alpha-hydroxyl group in [12 beta-3H]-labeled deoxycholic acid given to two patients operated with subtotal colectomy and ileostomy was markedly reduced (less than 20% of normal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Pseudomonas syringae pv. tomato PT23.2 produces the chlorosis-inducing phytotoxin coronatine. Thirty-eight chlorosis-defective mutants of PT23.2 were previously generated by using the transposon Tn5. Five mutants contained Tn5 insertions in the indigenous plasmid pPT23A; the remaining 33 mutants either were missing pPT23A (29 mutants) or contained deletions in this plasmid (4 mutants). These results suggested that pPT23A was involved in coronatine production in strain PT23.2. This plasmid was introduced into P. syringae pv. syringae PS61, which does not produce coronatine. A bioassay for coronatine suggested that PS61(pPT23A) transconjugants were able to make this phytotoxin. In a chemical analysis, organic acids were isolated from PT23.2, PS61, and the transconjugant PS61(pPT23A); these were derivatized to their methyl esters and analyzed by gas chromatography. The derivatized organic acids extracted from PT23.2 and PS61(pPT23A) contained peaks that corresponded to coronafacic acid, coronafacoylvaline, and coronatine, but these were absent in the extracts from the wild-type strain PS61. The identification of these components was confirmed by combined gas chromatography-mass spectrophotometry. Therefore, the acquisition of pPT23A by PS61 resulted in biosynthesis of coronafacic acid, coronafacoylvaline, and coronatine, clearly demonstrating the involvement of pPT23A in coronatine production in P. syringae pv. tomato.  相似文献   

13.
14.
Binding of bile acids by glutathione S-transferases from rat liver   总被引:4,自引:0,他引:4  
Binding of bile acids and their sulfates and glucuronides by purified GSH S-transferases from rat liver was studied by 1-anilino-8-naphthalenesulfonate fluorescence inhibition, flow dialysis, and equilibrium dialysis. In addition, corticosterone and sulfobromophthalein (BSP) binding were studied by equilibrium and flow dialysis. Transferases YaYa and YaYc had comparable affinity for lithocholic (Kd approximately 0.2 microM), glycochenodeoxycholic (Kd approximately to 60 microM), and cholic acid (Kd approximately equal 60 microM), and BSP (Kd approximately 0.09 microM). YaYc had one and YaYa had two high affinity binding sites for these ligands. Transferases containing the Yb subunit had two binding sites for these bile acids, although binding affinity for lithocholic acid (Kd approximately 4 microM) was lower than that of transferases with Ya subunit, and binding affinities for the other bile acids were comparable to the Ya family. Sulfated bile acids were bound with higher affinity and glucuronidated bile acids with lower affinity by YaYa and YaYc than the respective parent bile acids. In the presence of GSH, binding of lithocholate by YaYc was unchanged and binding by YbYb' was inhibited. Conversely, GSH inhibited the binding of cholic acid by YaYc but had less effect on binding by YbYb'. Cholic acid did not inhibit the binding of lithocholic acid by YaYa.  相似文献   

15.
The glucose transporter of the bacterial phosphotransferase system mediates sugar transport across the cytoplasmic membrane concomitant with sugar phosphorylation. It consists of a cytoplasmic subunit IIA(Glc) and the transmembrane subunit IICB(Glc). IICB(Glc) was purified to homogeneity by urea/alkali washing of membranes and nickel-chelate affinity chromatography. About 1.5 mg highly pure IICB(Glc) representing 77% of the total activity present in the membranes was obtained from 8g (wet weight) of cells. IICB(Glc) was reconstituted into lipid bilayers by temperature-controlled dialysis to yield small 2D crystals and by a rapid detergent-dilution procedure to yield densely packed vesicles. Electron microscopy and digital image processing of the negatively stained 2D crystals revealed a trigonal lattice with a unit cell size of a = b = 14.5 nm. The unit cell morphology exhibited three dimers of IICB(Glc) surrounding the threefold symmetry center. Single particle analysis of IICB(Glc) in proteoliposomes obtained by detergent dialysis also showed predominantly dimeric structures.  相似文献   

16.
枸杞多糖的提取纯化及组成分析   总被引:1,自引:0,他引:1  
采用水提法从枸杞中提取分离枸杞多糖(LBP)用DEAE纤维素柱色谱和凝胶柱色谱进行分离纯化,采用GPC-LLS法、红外光谱和气相色谱等方法对其组成进行研究。结果表明LBP含有3个级分,LBP的分子质量约为1.497×105,由阿拉伯糖(Ara),鼠李糖(Rha),木糖(Xyl),甘露糖(Man),半乳糖(Gal)和葡萄糖(Glc)6种中性单糖组成。  相似文献   

17.
Side chain oxidation and cleavage of precursors in cholic acid synthesis is thought to involve initial hydroxylation at either position 25 or 26 of the side chain. Therefore, the conversion of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 26-tetrol and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol into cholic acid was studied in normal subjects after single intravenous injections of these labeled alcohols. Eighty-six percent and 82% of 5 beta-cholestane, 3 alpha, 7 alpha, 12 alpha, 26-tetrol was converted into cholic acid in two subjects, respectively. However, only 14 and 16% of the injected 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol was converted into cholic acid in two subjects, respectively. Thus, this study indicates that 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol is an inefficient substrate for cholic acid biosynthesis in man and that the major route of cholic acid synthesis probably involves the 26-hydroxylated intermediate.  相似文献   

18.
Three approaches to the synthesis of ursodeoxycholic acid (UDC) from cholic acid have been investigated: (i) oxidation of cholic acid to 3α,7α-dihydroxy-12 keto-5β-cholanoic acid (12K-CDC) with Clostridium group P 12α-hydroxysteroid dehydrogenase (HSDH), isomerization of 12K-CDC to 3α, 7β-dihydroxy-12 keto-5β-cholanoic acid (12K-UDC) with Clostridium absonum 7α- and 7β-HSDH and reduction of 12K-UDC by Wolff-Kishner to UDC; (ii) isomerization of cholic acid to ursocholic acid (UC) by C. absonum 7α- and 7β-HSDH, oxidation of UC to 12K-UDC with Clostridium group P 12α-HSDH and Wolff-Kishner reduction of 12K-UDC to UDC; (iii) oxidation of cholic acid to 12K-CDC by Clostridium group P 12α-HSDH, Wolff-Kishner reduction of 12K-CDC to chenodeoxycholic acid (CDC) and isomerization of CDC to UDC using whole cell cultures of C. absonum. In the first two approaches (using cell free systems) the yields of desired product were relatively low primarily due to the formation of various side products. The third method proved the most successful giving an overall yield of 37% (UDC) whose structure was verified by mass spectroscopy of the methyl ester.  相似文献   

19.
The formation of mixed water-insoluble poorly absorbable crystals between cholesterol (CH) and phytosterols (PS) or phytostanols (PSS) in the intestinal lumen has been considered for a long time as a plausible mechanism of the PS/PSS-induced reduction of serum CH concentration. In this report, we demonstrated with the use of the powder X-ray diffraction (XRD) and the differential scanning calorimetry (DSC) techniques that mixed CH:beta-sitosterol (SI) crystals can be formed by recrystallization of corresponding mixtures from melts and also from mixed CH:SI solutions in triglyceride oil. Formation of mixed CH:SI crystals takes place in a wide interval of CH:SI ratios, from approximately 10 up to approximately 75 wt.% of SI in the mixture. Formation of mixed CH:sitostanol (SS) crystals from melts and solutions in triglyceride oil was also detected, but in a more narrow interval of CH:SS ratios. However, during the lipolysis of model dietary emulsions under in vitro conditions, the formation of crystalline material was not detected due to the relatively high solubility of free sterols/stanols in products of fat hydrolysis. We found that the solubility of free CH, SI, and SS raises upon the increase in the solvent polarity, i.e. free fatty acid > diglycerideoil > triglyceride oil. Therefore, we believe that the cocrystallization mechanism of phytosterol-induced serum CH lowering has relatively low importance, unless the diet is specially designed to include relatively little amounts of dietary fats. The presented experimental evidence demonstrates that it is unlikely that the formation of poorly absorbable mixed crystals largely affects the intestinal absorption of CH and, therefore, that this is a prime mechanism by which PS and PSS effect CH absorption.  相似文献   

20.
We report the very efficient biotransformation of cholic acid to 7-keto- and 7,12-diketocholic acids with Acinetobacter calcoaceticus lwoffii. The enzymes responsible of the biotransformation (i.e. 7alpha- and 12alpha-hydroxysteroid dehydrogenases) are partially purified and employed in a new chemo-enzymatic synthesis of ursodeoxycholic acid starting from cholic acid. The first step is the 12alpha-HSDH-mediated total oxidation of sodium cholate followed by the Wolf-Kishner reduction of the carbonyl group to chenodeoxycholic acid. This acid is then quantitatively oxidized with 7alpha-HSDH to 7-ketochenodeoxycholic acid, that was chemically reduced to ursodeoxycholic acid (70% overall yield).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号