首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Process variables and concentration of carbon in media were optimised for lactic acid production by Lactobacillus casei NRRL B-441. Lactic acid yield was inversely proportional to initial glucose concentration within the experimental area (80-160 g l(-1)). The highest lactic acid concentration in batch fermentation, 118.6 g l(-1), was obtained with 160 g 1(-1) glucose. The maximum volumetric productivity, 4.4 g 1(-1) h(-1) at 15 h, was achieved at an initial glucose concentration of 100 g l(-1). Similar lactic acid concentrations were reached with a fedbatch approach using growing cells, in which case the fermentation time was much shorter. Statistical experimental design and response surface methodology were used for optimising the process variables. The temperature and pH optima for lactic acid production were 35 degrees C, pH 6.3. Malt sprout extract supplemented with yeast extract (4 g l(-1)) appeared to be an economical alternative to yeast extract alone (22 g l(-1)) although the fermentation time was a little longer. The results demonstrated both the separation of the growth and lactic acid production phases and lactic acid production by non-growing cells without any nutrient supplements. Resting L. casei cells converted 120 g l(-1) glucose to lactic acid with 100% yield and a maximum volumetric productivity of 3.5 g l(-1) h(-1).  相似文献   

2.
l-Lactic acid was produced from raw cassava starch, by simultaneous enzyme production, starch saccharification and fermentation in a circulating loop bioreactor with Aspergillus awamori and Lactococcus lactis spp. lactis immobilized in loofa sponge. A. awamori was immobilized directly in cylindrical loofa sponge while the L. lactis was immobilized in a loofa sponge alginate gel cube. In the loofa sponge alginate gel cube, the sponge serves as skeletal support for the gel with the cells. The alginate gel formed a hard outer layer covering the soft porous gel inside. By controlling the rate and frequency of broth circulation between the riser and downcomer columns, the riser could be maintained under aerobic condition while the downcomer was under anaerobic condition. Repeated fed-batch l-lactic acid production was performed for more than 400 h and the average lactic acid yield and productivity from raw cassava starch were 0.76 g lactic acid g–1 starch and 1.6 g lactic acid l–1 h–1, respectively.  相似文献   

3.
Gibberellic acid (GA) production from milk permeate was studied by 28 mutants of Fusarium moniliforme, among which mutant gamma-14 was selected as the best producer. Experiments were carried out in shaker flasks and fermentative process was analyzed with free and immobilized cells. Immobilization of mutant gamma-14 cells onto loofa sponge discs was studied with respect to the optimization of the incubation temperature, initial pH, inoculum size (number of discs) and its reusability for GA production. Best yield of GA (2.40 gl(-1)) was recorded by immobilized cells under optimized cultural conditions (4 immobilized discs, 30 degrees C and pH 5). Data obtained during four reusable cycles showed high stability of GA production and reduction in the initiation time of acid production, resulting in higher levels of GA in shorter time duration. Immobilization of mutant gamma-14 cells onto loofa sponge discs, permitted repeated reuse under the specified fermentation conditions for GA production from milk permeate.  相似文献   

4.
The inhibition of lactic acid fermentation by wood hydrolyzate was decreased (approx. 20%) by adaptation of Enterococcus faecalis RKY1 to wood hydrolyzate-based medium whereby lactic acid productivity and cell growth were enhanced by 0.5 g l(-1) h(-1) and 2.1 g l(-1), respectively. When the diluted or concentrated wood hydrolyzate (equivalent to 25-100 g glucose l(-1)) was supplemented with 15 g yeast extract l(-1), 24-93 g lactic acid l(-1) was produced at a rate between 1.7 g l(-1) h(-1) and 3.2 g l(-1) h(-1).  相似文献   

5.
AIMS: Exopolysaccharides (EPS) were produced by Lactobacillus rhamnosus RW-9595M during pH-controlled batch cultures with free cells and repeated-batch cultures with cells immobilized on solid porous supports (ImmobaSil). METHODS AND RESULTS: Cultures were conducted in supplemented whey permeate (SWP) medium containing 5 or 8% (w/w) whey permeate. For free-cell batch cultures in 8% SWP medium, very high maximum cell counts (1.3 x 10(10) CFU ml(-1)) and EPS production (2350 mg l(-1)) were measured. A high EPS production (1750 mg l(-1)) was measured after four cycles for a short incubation period of only 7 h. Several methods for immobilized biomass determination based on analysis of biomass components (proteins, ATP and DNA) were tested. The DNA analysis method proved to be the most appropriate under these circumstances. This method revealed a high maximum immobilized biomass of 8.5 x 10(11) CFU ml(-1) support during repeated immobilized cell cultures in 5% SWP. The high immobilized biomass increased maximum EPS volumetric productivity (250 mg l(-1) h(-1) after 7 h culture) compared with free-cell batch cultures (110 mg l(-1) h(-1) after 18 h culture). CONCLUSIONS: High EPS productions were achieved during batch cultures of Lact. rhamnosus RW-9595M in SWP medium, exceeding 1.7 g EPS per litre. Repeated-batch cultures with immobilized cells resulted in increased EPS productivity compared with traditional free-cell cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: The study clearly shows the high potential of the strain Lact. rhamnosus RW-9595M and immobilized cell technology for production of EPS as a functional food ingredient.  相似文献   

6.
We describe here a simple technological process based on the direct fermentation of potato starch waste (PSW), an inexpensive agro-processing industrial waste, by a potential probiotic strain, Lactococcus lactis subsp. lactis, for enhancing L-lactic acid production. To maximize bioconversion and increase cell stability, we designed and tested a novel dialysis sac-based bioreactor. Shake flask fermentation (SFF) and fed batch fermentation in the dialysis sac bioreactor were compared for L-lactic acid production efficiency. The results showed that the starch (20 g/L) in the PSW-containing medium was completely consumed within 24 h in the dialysis sac bioreactor, compared with 48 h in the SFF. The maximum lactic acid concentration (18.9 g/L) and lactic acid productivity (0.79 g/L·h) obtained was 1.2- and 2.4-fold higher in the bioreactor than by SFF, respectively. Simultaneous saccharification and fermentation was effected at pH 5.5 and 30 °C. L. lactis cells were viable for up to four cycles in the fed batch fermentation compared to only one cycle in the SFF.  相似文献   

7.
Fishmeal wastewater, a seafood processing waste, was utilized for production of lactic acid and fungal biomass by Rhizopus oryzae AS 3.254 with the addition of sugars. The 30 g/l exogenous glucose in fishmeal wastewater was superior to starch in view of productivities of lactic acid and fungal biomass, and COD reduction. Fishmeal wastewater can be a replacement for peptone which was the most suitable nitrogen source for lactic acid production among the tested organic or inorganic nitrogen sources. Exogenous NaCl (12 g/l) completely inhibited the production of lactic acid and fungal growth. In the medium of COD 5,000 mg/l fishmeal wastewater with the addition of 30 g/l glucose, the maximum productivity of lactic acid was 0.723 g/l h corresponding to productivity of fungal biomass 0.0925 g/l h, COD reduction 84.9% and total nitrogen removal 50.3% at a fermentation time of 30 h.  相似文献   

8.
Yun JS  Wee YJ  Kim JN  Ryu HW 《Biotechnology letters》2004,26(20):1613-1616
Rice and wheat brans, without additional nutrients and hydrolyzed by alpha-amylase and amyloglucosidase, were fermented to DL-lactic acid using a newly isolated strain of Lactobacillus sp. RKY2. In batch fermentations at 36 degrees C and pH 6, the amount of lactic acid in fermentation broth reached 129 g l(-1) by supplementation of rice bran with whole rice flour. The maximum productivity was 3.1 g lactic acid l(-1) h(-1) in rice bran medium supplemented with whole rice flour or whole wheat flour.  相似文献   

9.
To increase the productivity of lactic acid, a co-culture of lactobacilli was made by mixing 1:1 ratio of Lactobacillus paracasei subsp. paracasei and a fast growing L. delbrueckii subsp. delbrueckii mutant. The culture was embedded on to polyurethane foam (PUF) cubes as a biofilm and used for fermentation. In order to prevent the cell leakage, the PUF cubes were further entrapped in calcium cross-linked alginate. The maximum lactic acid production using a high cell density free culture was >38 g l(-1) from ~40 g l(-1) of reducing sugar within 12 h of fermentation. Using PUF biofilms, the same yield of lactic acid attained after 24 h. When the cubes were further coated with alginate it took 36 h for the maximum yield. Even though, the productivity is slightly lesser with the alginate coating, cell leakage was decreased and cubes were reused without much decrease in production in repeated batches. Using a conventional control inoculum (3%, w/v), it took 120 h to yield same amount of lactic acid.  相似文献   

10.
Besides lactic acid, many lactic acid bacteria also produce proteinaceous metabolites (bacteriocins) such as nisin. As catabolite repression and end-product inhibition limit production of both products, we have investigated the use of alternative methods of supplying substrate and neutralizing or extracting lactic acid to increase yields. Fed-batch fermentation trials using a stillage-based medium with pH control by NH4OH resulted in improved lactic acid (83.4 g/l, 3.18 g/l/h, 95% yield) and nisin (1,260 IU/ml, 84,000 IU/l/h, 14,900 IU/g) production. Removing particulate matter from the stillage-based medium increased nisin production (1,590 IU/ml, 33,700 IU/g), but decreased lactic acid production (58.5 g/l, 1.40 g/l/h, 96% yield). Removing lactic acid by ion exchange resins stimulated higher lactic acid concentrations (60 to 65 g/l) and productivities (2.0 to 2.6 g/l/h) in the filtered stillage medium at the expense of nisin production (1,500 IU/ml, 25,800 IU/g).  相似文献   

11.
Protease-treated wheat bran (20% w/v) of particle size less than 300 μm containing 65% (w/w) starch was used for the simultaneous saccharification and l-(+)-lactic acid fermentation by the mixed cultures of Lactobacillus casei and Lactobacillus delbrueckii. Maximum lactate yield after various process optimizations was 123 gl−1 with a productivity of 2.3 gl−1 h−1 corresponding to a conversion of 0.95 g lactic acid per gram starch after 54 h at 37°C. By using protease-treated wheat bran around tenfold decrease in supplementation of the costly medium component, like yeast extract, was achieved together with a considerable increase in the production level.  相似文献   

12.
Clavulanic acid, a naturally occurring powerful inhibitor of bacterial beta-lactamases, is produced by Streptomyces clavuligerus. The high void volume, permeability, and low cost of fibrous matrices prompted the use of Luffa cylindrica as a matrix for the immobilization of S. clavuligerus for the production of clavulanic acid. Immobilization of S. clavuligerus onto loofah sponge discs was studied with respect to the optimization of the inoculum size (number of discs) and its reusability for clavulanic acid production. Best yield of 1125 microg ml(-1) clavulanic acid was reached with two discs of loofah sponge (each approximately 0.136 g dry weight) and 120 h duration in the first cycle. Data obtained during four reusable cycles showed reduction in the initiation time of clavulanic acid production, resulting in higher levels of clavulanic acid in shorter time duration. Immobilization of S. clavuligerus on to loofah sponge discs, therefore, permit repeated reuse under the specified fermentation conditions for clavulanic acid production.  相似文献   

13.
Oh H  Wee YJ  Yun JS  Ho Han S  Jung S  Ryu HW 《Bioresource technology》2005,96(13):1492-1498
Agricultural resources such as barley, wheat, and corn were hydrolyzed by commercial amylolytic enzymes and fermented into lactic acid by Enterococcus faecalis RKY1. Although no additional nutrients were supplemented to those resources, lactic acid productivities were obtained at >0.8 g/l h from barley and wheat. When 200 g/l of whole wheat flour was hydrolyzed by amylolytic enzymes after the pre-treatment with 0.3% (v/v) sulfuric acid and sterilized by filtration, E. faecalis RKY1 efficiently produced lactic acid with 2.6 g/l h of lactic acid productivity and 5.90 g/l of maximal dry cell weight without additional nutrients. Lactic acid productivity and cell growth could be enhanced to 31% and 12% higher values than those of non-adapted RKY1, by adaptation of E. faecalis RKY1 to CSL-based medium. When the medium contained 200 g/l of whole wheat flour hydrolyzate, 15 g/l of corn steep liquor, and 1.5 g/l of yeast extract, lactic acid productivity and maximal dry cell weight were obtained at 5.36 g/l h and 14.08 g/l, respectively. This result represented an improvement of up to 106% of lactic acid productivity and 138% of maximal dry cell weight in comparison to the fermentation from whole wheat flour hydrolyzate only.  相似文献   

14.
A 5 l packed bed bioreactor was used to study the effect of initial lactose concentration and hydraulic retention time (HRT) on cell growth, lactose utilization and lactic acid production. Up to 95% of the initial lactose concentration was utilized at longer HRTs (30-36 h). The study showed that lactic acid production increased with increases in HRT (12-36 h) and initial lactose concentrations. The highest lactic acid production rate (3.90 g l(-1) h(-1)) was obtained with an initial lactose concentration of 100 g/l and an HRT of 18 h, whereas the lowest lactic acid production rate (1.35 g l(-1) h(-1)) was obtained with an initial lactose concentration of 50 g/l and an HRT of 36 h. This suggested that optimal lactic acid production can be achieved at an HRT of 18 h and initial lactose concentration of 100 g/l.  相似文献   

15.
The by-products of bioethanol production such as thin stillage (TS) and condensed distillers solubles (CDS) were used as a potential nitrogen source for economical production of lactic acid. The effect of those by-products and their concentrations on lactic acid fermentation were investigated using Lactobacillus paracasei CHB2121. Approximately, 6.7 g/L of yeast extract at a carbon source to nitrogen source ratio of 15 was required to produce 90 g/L of lactic acid in the medium containing 100 g/L of glucose. Batch fermentation of TS medium resulted in 90 g/L of lactic acid after 48 h, and the medium containing 10 % CDS resulted in 95 g/L of lactic acid after 44 h. Therefore, TS and CDS could be considered as potential alternative fermentation medium for the economical production of lactic acid. Furthermore, lactic acid fermentation was performed using only cassava and CDS for commercial production of lactic acid. The volumetric productivity of lactic acid [2.94 g/(L·h)] was 37 % higher than the productivity obtained from the medium with glucose and CDS.  相似文献   

16.
AIMS: To examine the potential of Lactobacillus delbrueckii mutant, Uc-3 to produce lactic acid and fructose from sucrose-based media. METHODS AND RESULTS: The mutant of L. delbrueckii NCIM 2365 was cultivated in shake flask containing hydrolysed cane sugar (sucrose)-based medium. The lactic acid yield and volumetric productivity with hydrolysed cane concentration up to 200 g l(-1) were in the range of 92-97% of the theoretical value and between 2.7 and 3.8 g l(-1) h(-1), respectively. The fructose fraction of the syrup produced was more than 95% when the total initial sugar concentration in the medium was higher (150-200 g l(-1)). There are no unwanted byproducts detected in the fermentation broth. CONCLUSIONS: We demonstrated that L. delbrueckii mutant Uc-3 was able to utilize glucose preferentially to produce lactic acid and fructose from hydrolysed cane sugar in batch fermentation process. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings will be useful in the production of lactic acid and high fructose syrups using media with high concentrations of sucrose-based raw materials. This approach can lead to modification of the traditional fermentation processes to obtain value-added byproducts, attaining better process economics.  相似文献   

17.
Chitosan (0.1 g l(-1)), assayed in a simple medium, reduced the viability of four lactic acid bacteria isolated during the beer production process by 5 logarithmic cycles, whereas activity against seven commercial brewing yeasts required up to 1 g chitosan l(-1). Antimicrobial activity was inversely affected by the pH of the assay medium. In brewery wort, chitosan (0.1 g l(-1)) selectively inhibited bacterial growth without altering yeast viability or fermenting performance.  相似文献   

18.
A customized stirred-tank biofilm reactor was designed for plastic-composite supports (PCS). In repeated-batch studies, the PCS-biofilm reactors outperformed the suspended-cell reactors by demonstrating higher lactic acid productivities (2.45 g l(-1) h(-1) vs 1.75 g l(-1) h(-1)) and greater glucose consumption rates (3.27 g l(-1) h(-1) vs 2.09 g l(-1) h(-1)). In the repeated fed-batch studies, reactors were spiked periodically with concentrated glucose (75%) to maintain a concentration of approximately 80 g of glucose l(-1) in the bioreactor. In suspended-cell fermentations with 10 g of yeast extract (YE) l(-1) and zero, one, two, and three glucose spikes, the lactic acid productivities were 2.64, 1.58, 0.80, and 0.62 g l(-1) h(-1), respectively. In comparison, biofilm reactors with 7 g of YE l(-1) and zero, one, two, and three glucose spikes achieved lactic acid productivities of 4.20, 2.78, 0.66, and 0.94 g l(-1) h(-1), respectively. The use of nystatin (30 U ml(-1)) subdued the contaminating yeast population with no effect on the lactic acid productivity of the biofilm reactors, but it did affect productivity in the suspended-cell bioreactor. Overall, in repeated fed-batch fermentations, the biofilm reactors consistently outperformed the suspended-cell bioreactors, required less YE, and produced up to 146 g of lactic acid l(-1) with 7 g of YE l(-1), whereas the suspended-cell reactor produced 132 g l(-1) with 10 g of YE l(-1).  相似文献   

19.
Coupled lactic acid fermentation and adsorption   总被引:7,自引:0,他引:7  
Polyvinylpyridine (PVP) and activated carbon were evaluated for coupled lactic acid fermentation and adsorption, to prevent the product concentration from reaching inhibitory levels. The lactic acid production doubled as a result of periodical circulation of the fermentation broth through a PVP adsorption column. The adsorbent was then regenerated and the adsorbed lactate harvested, by passing 0.1 N NaOH through the column. However, each adsorption-regeneration cycle caused about 14% loss of the adsorption capacity, thus limiting the practical use of this rather expensive adsorbent. Activated carbon was found much more effective than PVP in lactic acid and lactate adsorption. The cells of Lactobacillus delbrueckii subsp. delbrueckii (LDD) also had strong tendency to adsorb on the carbon. A study was therefore conducted using an activated carbon column for simultaneous cell immobilization and lactate adsorption, in a semi-batch process with periodical medium replacement. The process produced lactate steadily at about 1.3 g l(-1)h(-1) when the replacement medium contained at least 2 g l(-1) of yeast extract. The production, however, stopped after switching to a medium without yeast extract. Active lactic acid production by LDD appeared to require yeast extract above a certain critical level (<2 g l(-1)).  相似文献   

20.
Summary A method for the continuous production of extracellular alpha amylase by surface immobilized cells of Bacillus amyloliquefaciens NRC 2147 has been developed. A large-pore, macroreticular anionic exchange resin was capable of initially immobilizing an effective cell concentration of 17.5 g DW/1 (based on a total reactor volume of 160 ml). The reactor was operated continuously with a nutrient medium containing 15 g/l soluble starch, as well as yeast extract and salts. Aeration was achieved by sparging oxygen enriched air into the column inlet. Fermentor plugging by cells was avoided by periodically substituting the nutrient medium with medium lacking in both soluble starch and yeast extract. This fermentor was operated for over 200 h and obtained a steady state enzyme concentration of 18700 amylase activity units per litre (18.7 kU/l), and an enzyme volumetric productivity of 9700 amylase activity units per litre per hour (9.7 kU/l-h). Parallel fermentations were performed using a 2 l stirred vessel fermentor capable of operation in batch and continuous mode. All fermentation conditions employed were identical to those of the immobilized cell experiments in order to assess the performance of the immobilized cell reactor. Batch stirred tank operation yielded a maximum amylase activity of 150 kU/l and a volumetric productivity of 2.45 kU/l-h. The maximum cell concentration obtained was 5.85 g DW/l. Continuous stirred tank fermentation obtained a maximum effluent amylase activity of 6.9 kU/l and a maximum enzyme volumetric productivity of 2.73 kU/l-h. Both of these maximum values were observed at a dilution rate of 0.345 l/h. The immobilized cell reactor was observed to achieve larger volumetric productivities than either mode of stirred tank fermentation, but achieved an enzyme activity concentration lower than that of the batch stirred tank fermentor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号