首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Given the pressures on land to produce ever more food, doing it ‘sustainably’ is growing in importance. However, ‘sustainable agriculture’ is complex to define, not least because agriculture impacts in many different ways and it is not clear how different aspects of sustainability may be in synergy or trade off against each other. We conducted a meta‐analysis to assess the relationships between multiple measures of sustainability using novel analytical methods, based around defining the efficiency frontier in the relationship between variables, as well as using correlation analysis. We define 20 grouped variables of agriculture's impact (e.g. on soil, greenhouse gas, water, biodiversity) and find evidence of both strong positive and negative correlations between them. Analysis based on the efficiency frontier suggests that trade‐offs can be ‘softened’ by exploiting the natural between‐study variation that arises from a combination of farming best practice and context. Nonetheless, the literature provides strong evidence of the relationship between yields and the negative externalities created by farming across a range of measures.  相似文献   

3.
Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade‐offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services.  相似文献   

4.
The global increase in the proportion of land cultivated with pollinator‐dependent crops implies increased reliance on pollination services. Yet agricultural practices themselves can profoundly affect pollinator supply and pollination. Extensive monocultures are associated with a limited pollinator supply and reduced pollination, whereas agricultural diversification can enhance both. Therefore, areas where agricultural diversity has increased, or at least been maintained, may better sustain high and more stable productivity of pollinator‐dependent crops. Given that >80% of all crops depend, to varying extents, on insect pollination, a global increase in agricultural pollinator dependence over recent decades might have led to a concomitant increase in agricultural diversification. We evaluated whether an increase in the area of pollinator‐dependent crops has indeed been associated with an increase in agricultural diversity, measured here as crop diversity, at the global, regional, and country scales for the period 1961–2016. Globally, results show a relatively weak and decelerating rise in agricultural diversity over time that was largely decoupled from the strong and continually increasing trend in agricultural dependency on pollinators. At regional and country levels, there was no consistent relationship between temporal changes in pollinator dependence and crop diversification. Instead, our results show heterogeneous responses in which increasing pollinator dependence for some countries and regions has been associated with either an increase or a decrease in agricultural diversity. Particularly worrisome is a rapid expansion of pollinator‐dependent oilseed crops in several countries of the Americas and Asia that has resulted in a decrease in agricultural diversity. In these regions, reliance on pollinators is increasing, yet agricultural practices that undermine pollination services are expanding. Our analysis has thereby identified world regions of particular concern where environmentally damaging practices associated with large‐scale, industrial agriculture threaten key ecosystem services that underlie productivity, in addition to other benefits provided by biodiversity.  相似文献   

5.
6.
With the human population expected to near 10 billion by 2050, and diets shifting towards greater per‐capita consumption of animal protein, meeting future food demands will place ever‐growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross‐sector dependencies create for sustainable food production. Yet without understanding the full suite of interactions between food systems on land and sea, development in one sector may result in unanticipated trade‐offs in another. We review the interactions between terrestrial and aquatic food systems. We show that most of the studied land–sea interactions fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood interactions, and climate feedback. Critically, these interactions modify nutrient flows, and the partitioning of natural resource use between land and sea, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter‐productive trade‐offs resulting from land‐sea links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross‐sector interactions could transmit change across ecosystem and governance boundaries into the future.  相似文献   

7.
8.
Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity. However, few studies have considered landscape effects on the stability of ecosystem services. We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields. We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities. Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas. At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation. Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively. In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies. Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant. Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.  相似文献   

9.
10.
Plant reproductive trade‐offs are thought to be caused by resource limitations or other constraints, but more empirical support for these hypotheses would be welcome. Additionally, quantitative characterization of these trade‐offs, as well as consideration of whether they are linear, could yield additional insights. We expanded our flower removal research on lowbush blueberry (Vaccinium angustifolium) to explore the nature of and causes of its reproductive trade‐offs. We used fertilization, defoliation, positionally biased flower removal, and multiple flower removal levels to discern why reproductive trade‐offs occur in this taxon and to plot these trade‐offs along two continuous axes. We found evidence through defoliation that vegetative mass per stem may trade off with reproductive effort in lowbush blueberry because the two traits compete for limited carbon. Also, several traits including ripe fruit production per reproductive node and fruit titratable acidity may be “sink‐limited”—they decline with increasing reproductive effort because average reproductive structure quality declines. We found no evidence that reproductive trade‐offs were caused by nitrogen limitation. Use of reproductive nodes remaining per stem as a measure of reproductive effort indicated steeper trade‐offs than use of the proportion of nodes remaining. For five of six traits, we found evidence that the trade‐off could be concave down or up instead of strictly linear. Synthesis. To date, studies have aimed primarily at identifying plant reproductive trade‐offs. However, understanding how and why these trade‐offs occur represent the exciting and necessary next steps for this line of inquiry.  相似文献   

11.
Interlocked challenges of climate change, biodiversity loss, and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co‐benefits with and trade‐offs against different social and environmental goals have been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCPs) and the 17 Sustainable Development Goals (SDGs). We find that a relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade‐offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization, and compaction, fire management, reduced landslides and hazards, reduced pollution, reduced post‐harvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage, afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co‐benefits and trade‐offs of different policy approaches can help decision‐makers choose the more effective, or at the very minimum, more benign interventions for implementation.  相似文献   

12.
Climate‐smart agriculture (CSA) and sustainable intensification (SI) are widely claimed to be high‐potential solutions to address the interlinked challenges of food security and climate change. Operationalization of these promising concepts is still lacking and potential trade‐offs are often not considered in the current continental‐ to global‐scale assessments. Here we discuss the effect of spatial variability in the context of the implementation of climate‐smart practices on two central indicators, namely yield development and carbon sequestration, considering biophysical limitations of suggested benefits, socioeconomic and institutional barriers to adoption, and feedback mechanisms across scales. We substantiate our arguments by an illustrative analysis using the example of a hypothetical large‐scale adoption of conservation agriculture (CA) in sub‐Saharan Africa. We argue that, up to now, large‐scale assessments widely neglect the spatially variable effects of climate‐smart practices, leading to inflated statements about co‐benefits of agricultural production and climate change mitigation potentials. There is an urgent need to account for spatial variability in assessments of climate‐smart practices and target those locations where synergies in land functions can be maximized in order to meet the global targets. Therefore, we call for more attention toward spatial planning and landscape optimization approaches in the operationalization of CSA and SI to navigate potential trade‐offs.  相似文献   

13.
河西内陆河流域参考作物蒸散量的时空特征   总被引:1,自引:0,他引:1  
基于河西内陆河流域17个气象站1961-2008年逐日气象数据,采用Penman-Monteith公式计算了逐日参考作物蒸散量(ET0),利用GIS空间分析功能,采用反距离空间插值方法研究了年和季节ET0的时空特征.结果表明:1961-2008年,河西内陆河流域年均ET0(700~1330 mm)由东南向西北逐渐增加;黑河流域和疏勒河流域年均ET0高值区呈显著下降趋势(P<0.05),其气候倾向率在-53~-10 mm·(10 a)-1,石羊河流域年均ET0低值区呈微弱增加趋势;研究区各流域ET0年际波动较大,并以临泽为较大的波中心,分别向西北和东南两个方向降低.春季和夏季是河西内陆河流域ET0的集中季节,且疏勒河流域一直是四季ET0值最高的地区.研究区ET0气候倾向率依次为夏季>春季>秋季>冬季.影响河西内陆河流域ET0变化的主要气候因子是风速和最高温度,其中风速是引起疏勒河和黑河流域ET0呈现减少趋势的主导因子,最高温度和日照时数是引起石羊河流域ET0呈现增加趋势的主导因子.  相似文献   

14.
Recycling of livestock manure to agricultural land may reduce the use of synthetic fertilizer and thereby enhance the sustainability of food production. However, the effects of substitution of fertilizer by manure on crop yield, nitrogen use efficiency (NUE), and emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) as function of soil and manure properties, experimental duration and application strategies have not been quantified systematically and convincingly yet. Here, we present a meta‐analysis of these effects using results of 143 published studies in China. Results indicate that the partial substitution of synthetic fertilizers by manure significantly increased the yield by 6.6% and 3.3% for upland crop and paddy rice, respectively, but full substitution significantly decreased yields (by 9.6% and 4.1%). The response of crop yields to manure substitution varied with soil pH and experimental durations, with relatively large positive responses in acidic soils and long‐term experiments. NUE increased significantly at a moderate ratio (<40%) of substitution. NH3 emissions were significantly lower with full substitution (62%–77%), but not with partial substitution. Emissions of CH4 from paddy rice significantly increased with substitution ratio (SR), and varied by application rates and manure types, but N2O emissions decreased. The SR did not significantly influence N2O emissions from upland soils, and a relative scarcity of data on certain manure characteristic was found to hamper identification of the mechanisms. We derived overall mean N2O emission factors (EF) of 0.56% and 0.17%, as well as NH3 EFs of 11.1% and 6.5% for the manure N applied to upland and paddy soils, respectively. Our study shows that partial substitution of fertilizer by manure can increase crop yields, and decrease emissions of NH3 and N2O, but depending on site‐specific conditions. Manure addition to paddy rice soils is recommended only if abatement strategies for CH4 emissions are also implemented.  相似文献   

15.
Ephemeral cropping systems are characterized by frequent disturbances of ecological processes, which may compromise the conservation of plant and arthropod diversity and the ecosystem services they may provide. Conservation biological control practices include habitat manipulations that provide non‐pest resources and selectively enhance natural enemies' effectiveness. This study, conducted in eight commercial fields of organically grown tomato, compared the effectiveness of sown flower strips with semi‐natural margins in regulating natural enemy abundance, biocontrol, and crop damage. During repeated visits, the abundance of different arthropod groups was recorded. Crop surveys included measurement of aphid abundance, parasitism, and leaf and fruit damage from sap‐sucking and lepidopteran pests. Semi‐natural habitats were associated with higher vegetation diversity, but natural enemies were more strongly associated with sown strips during flowering. Sap‐sucking pests were always recorded in higher abundance in flower strips, but crop damage in the plots adjacent to these strips was lower, suggesting that these strips may act as a trap‐crop. The inclusion of floral supplements enhanced the parasitism rate of aphids in the crop, and reduced the rate of increase of lepidopteran‐caused foliar damage with time. Early in the growing season, semi‐natural strips showed significantly lower levels of crop damage and aphid counts, suggesting that these habitats may be important during early crop colonization by natural enemies. These results indicate that the inclusion of flower strips enhances the conservation of arthropod functional diversity in ephemeral crops, and that diverse mechanisms are important for controlling different pests. However, the efficacy of habitat manipulation is likely to be greater when it is complemented with the conservation of diverse semi‐natural vegetation in the pre‐existing field margin.  相似文献   

16.
Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one‐off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications. The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience should incorporate an assessment of both pulse and press disturbances to ensure detection of threshold responses to disturbance, so that appropriate management interventions can be identified.  相似文献   

17.
Poverty, food insecurity, climate change and biodiversity loss continue to persist as the primary environmental and social challenges faced by the global community. As such, there is a growing acknowledgement that conventional sectorial approaches to addressing often inter‐connected social, environmental, economic and political challenges are proving insufficient. An alternative is to focus on integrated solutions at landscape scales or ‘landscape approaches’. The appeal of landscape approaches has resulted in the production of a significant body of literature in recent decades, yet confusion over terminology, application and utility persists. Focusing on the tropics, we systematically reviewed the literature to: (i) disentangle the historical development and theory behind the framework of the landscape approach and how it has progressed into its current iteration, (ii) establish lessons learned from previous land management strategies, (iii) determine the barriers that currently restrict implementation of the landscape approach and (iv) provide recommendations for how the landscape approach can contribute towards the fulfilment of the goals of international policy processes. This review suggests that, despite some barriers to implementation, a landscape approach has considerable potential to meet social and environmental objectives at local scales while aiding national commitments to addressing ongoing global challenges.  相似文献   

18.
Landscape moderation of biodiversity patterns and processes - eight hypotheses   总被引:10,自引:0,他引:10  
Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscape-moderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management.  相似文献   

19.
The availability of carbon (C) from high levels of atmospheric carbon dioxide (CO2) and anthropogenic release of nitrogen (N) is increasing, but these increases are not paralleled by increases in levels of phosphorus (P). The current unstoppable changes in the stoichiometries of C and N relative to P have no historical precedent. We describe changes in P and N fluxes over the last five decades that have led to asymmetrical increases in P and N inputs to the biosphere. We identified widespread and rapid changes in N:P ratios in air, soil, water, and organisms and important consequences to the structure, function, and biodiversity of ecosystems. A mass‐balance approach found that the combined limited availability of P and N was likely to reduce C storage by natural ecosystems during the remainder of the 21st Century, and projected crop yields of the Millennium Ecosystem Assessment indicated an increase in nutrient deficiency in developing regions if access to P fertilizer is limited. Imbalances of the N:P ratio would likely negatively affect human health, food security, and global economic and geopolitical stability, with feedbacks and synergistic effects on drivers of global environmental change, such as increasing levels of CO2, climatic warming, and increasing pollution. We summarize potential solutions for avoiding the negative impacts of global imbalances of N:P ratios on the environment, biodiversity, climate change, food security, and human health.  相似文献   

20.
Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil–plant interactions induce trade‐offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号