首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘阁逄越  李庆伟刘欣 《遗传》2013,35(9):1072-1080
C1q蛋白家族由众多含C1q结构域的蛋白组成, 从细菌到高等哺乳动物中都有分布。这类蛋白由一条信号肽、胶原样区(Collage-like region, CLR)和C1q球状结构域(Globular C1q domain, gC1q)组成。C1q蛋白家族根据其结构特点, 可分为三大类分子:C1q、C1q-like和ghC1q。C1q是补体经典途径的起始分子, 能够识别免疫复合物, 启动补体系统经典途径; 此外, 作为一种模式识别受体分子(Pattern recognition receptor, PRR), 它可以结合种类繁多的配体。C1q-like蛋白的结构类似于C1q分子, 含有CLR和gC1q结构域, 在水蛭中参与神经系统的修复, 在脊椎动物中实现从凝集素到免疫球蛋白结合分子的功能转变, 参与补体系统的激活。ghC1q蛋白只具有gC1q结构域和一段短的N末端序列, 包括分泌型蛋白(sghC1q)和非分泌型蛋白(cghC1q)。sghC1q在无脊椎动物固有免疫系统中发挥重要作用; 脊椎动物中的sghC1q可作为一类新型跨神经元调节因子, 在大脑的许多区域调节突触发育和突触可塑性。cghC1q基因最早可追溯至芽孢杆菌属的细菌中, 具有典型的gC1q果冻卷结构, 说明gC1q结构域有着非常悠久的进化历程且结构高度保守。文章对C1q蛋白家族的结构、分布、分类以及功能进行综述, 以期为从事该领域研究的科研人员提供有益参考。  相似文献   

2.
C1q, the binding subunit of the C1 complex of complement, is an archetypal pattern recognition molecule known for its striking ability to recognize a wide variety of targets, ranging from pathogenic non self to altered self. DNA is one of the C1q ligands, but the precise region of C1q and the DNA motifs that support interaction have not been characterized yet. Here, we report for the first time that the peripheral globular region of the C1q molecule displays a lectin-like activity, which contributes to DNA binding through interaction with its deoxy-d-ribose moiety and may participate in apoptotic cell recognition.  相似文献   

3.
Hyaluronan-binding protein 1 (HABP1)/p32/gC1qR was characterized as a highly acidic and oligomeric protein, which binds to different ligands like hyaluronan, C1q, and mannosylated albumin. It exists as trimer in high ionic and reducing conditions as shown by crystal structure. In the present study, we have examined the structural changes of HABP1 under a wide range of ionic environments. HABP1 exhibits structural plasticity, which is influenced by the ionic environment under in vitro conditions near physiological pH. At low ionic strength HABP1 exists in a highly expanded and loosely held trimeric structure, similar to that of the molten globule-like state, whereas the presence of salt stabilizes the trimeric structure in a more compact fashion. It is likely that the combination of the high net charge asymmetrically distributed along the faces of the molecule and the relatively low intrinsic hydrophobicity of HABP1 result in its expanded structure at neutral pH. Thus, the addition of counter ions in the molecular environment minimizes the intramolecular electrostatic repulsion in HABP1 leading to its stable and compact conformations, which reflect in its differential binding toward different ligands. Whereas the binding of HABP1 toward HA is enhanced on increasing the ionic strength, no significant effect was observed with the two other ligands, C1q and mannosylated albumin. Thus, although HA interacts only with compact HABP1, C1q and mannosylated albumin can bind to loosely held oligomeric HABP1 as well. In other words, structural changes in HABP1 mediated by changes in the ionic environment are responsible for recognizing different ligands.  相似文献   

4.
As a charge pattern recognition molecule, human C1q can bind a range of immunoglobulin and non-immunoglobulin ligands via its carboxy-terminal globular domain and activate the classical complement pathway. Each globular domain has a heterotrimeric organization, composed of the carboxy-terminal halves of one A (ghA), one B (ghB), and one C (ghC) chain. Recently, we have found that the recombinant forms of individual ghA, ghB and ghC bind differentially to IgG, IgM, gp41 peptide 601-613 of human immunodeficiency virus-1 (HIV-1), gp21 peptide 400-429 of human T cell lymphotrophic virus-I (HTLV-I), beta-amyloid peptide, and apoptotic cells, suggesting a modular organization of the globular domain. This paper examines the interaction of ghA, ghB and ghC with two known C1q ligands: Klebsiella pneumoniae porin OmpK36 and salivary agglutinin. In addition, we have used a panel of recombinant single-chain antibodies (scFv) specific for ghA, ghB and ghC in order to map sites on the heterotrimeric globular domain which are likely to interact with IgG1, IgG3, IgM, OmpK36, salivary agglutinin and gp41 loop peptide. The combined use of recombinant ghA, ghB, ghC and single-chain antibodies has revealed at least three ligand-binding sites on the globular domain of C1q: one is IgG- and OmpK36-specific, the second (IgM-binding site) is most likely overlapping with IgG/OmpK36 binding site, and the third (the gp41-binding site) seems to be located at the junction between the collagen and globular domains.  相似文献   

5.
6.
C1q is a versatile recognition protein that binds to an amazing variety of immune and non-immune ligands and triggers activation of the classical pathway of complement. The crystal structure of the C1q globular domain responsible for its recognition properties has now been solved and refined to 1.9 A of resolution. The structure reveals a compact, almost spherical heterotrimeric assembly held together mainly by non-polar interactions, with a Ca2+ ion bound at the top. The heterotrimeric assembly of the C1q globular domain appears to be a key factor of the versatile recognition properties of this protein. Plausible three-dimensional models of the C1q globular domain in complex with two of its physiological ligands, C-reactive protein and IgG, are proposed, highlighting two of the possible recognition modes of C1q. The C1q/human IgG1 model suggests a critical role for the hinge region of IgG and for the relative orientation of its Fab domain in C1q binding.  相似文献   

7.
The complex C1 triggers the activation of the Complement classical pathway through the recognition and binding of antigen-antibody complex by its subunit C1q. The globular region of C1q is responsible for C1 binding to the immune complex. C1q can also bind nonimmune molecules such as DNA and sulfated polysaccharides, leading either to the activation or inhibition of Complement. The binding site of these nonimmune ligands is debated in the literature, and it has been proposed to be located either in the globular region or in the collagen-like region of C1q, or in both. Using single molecule fluorescence microscopy and DNA molecular combing as reporters of interactions, we have probed the C1q binding properties of T4 DNA and of fucoidan, an algal sulfated fucose-based polysaccharide endowed with potent anticomplementary activity. We have been able to visualize the binding of C1q as well as of C1 and of the isolated collagen-like region to individual DNA strands, indicating that the collagen-like region is the main binding site of DNA. From binding assays with C1r, one of the protease components of C1, we concluded that the DNA binding site on the collagen-like region is located within the stalk part. Competition experiments between fucoidan and DNA for the binding of C1q showed that fucoidan binds also to the collagen-like region part of C1q. Unlike DNA, the binding of fucoidan to collagen-like region involves interactions with the hinge region that accommodate the catalytic tetramer C1r2-C1s2 of C1. This binding property of fucoidan to C1q provides a mechanistic basis for the anticomplementary activity of the sulfated polysaccharide.  相似文献   

8.
C1q is the first subcomponent of the classical complement pathway that can interact with a range of biochemically and structurally diverse self and nonself ligands. The globular domain of C1q (gC1q), which is the ligand-recognition domain, is a heterotrimeric structure composed of the C-terminal regions of A (ghA), B (ghB), and C (ghC) chains. The expression and functional characterization of ghA, ghB, and ghC modules have revealed that each chain has specific and differential binding properties toward C1q ligands. It is largely considered that C1q-ligand interactions are ionic in nature; however, the complementary ligand-binding sites on C1q and the mechanisms of interactions are still unclear. To identify the residues on the gC1q domain that are likely to be involved in ligand recognition, we have generated a number of substitution mutants of ghA, ghB, and ghC modules and examined their interactions with three selected ligands: IgG1, C-reactive protein (CRP), and pentraxin 3 (PTX3). Our results suggest that charged residues belonging to the apex of the gC1q heterotrimer (with participation of all three chains) as well as the side of the ghB are crucial for C1q binding to these ligands, and their contribution to each interaction is different. It is likely that a set of charged residues from the gC1q surface participate via different ionic and hydrogen bonds with corresponding residues from the ligand, instead of forming separate binding sites. Thus, a recently proposed model suggesting the rotation of the gC1q domain upon ligand recognition may be extended to C1q interaction with CRP and PTX3 in addition to IgG1.  相似文献   

9.
It has been shown recently that C1q, a subcomponent of the first component of the classical complement pathway, is synthesized by macrophages and that endogenous C1q is detectable on the macrophage membrane. In this report, we demonstrate that membrane-associated C1q, which contains the A, B, and C chains of C1q, is structurally distinct from fluid-phase C1q in that the B chain of the membrane species is approximately 1000 m.w. less than its fluid-phase counterpart. By using biosynthetically ([3H]proline) labeled C1q from guinea pig peritoneal macrophages, we found that the membrane form of C1q is derived from already secreted C1q. The demonstration of a distinct membrane form of C1q supports earlier functional studies which implicated C1q as a membrane-associated molecule with receptor functions for those molecules which also interact with fluid-phase C1q, such as polyanions, immune complexes, and bacteria. Furthermore, we show that, in the vicinity of macrophages, C1q is very susceptible to oxidation manifested by the formation of disulfide bonds. By SDS-PAGE (nonreduced and reduced), we demonstrate the existence of disulfide-linked multimers (180,000 m.w., 360,000 m.w.) which are composed of the A, B, and C chains of C1q.  相似文献   

10.
Li X  Tedder TF 《Genomics》1999,55(3):345-347
Sulfation is essential for the generation of functional vascular endothelial cell ligands for the leukocyte adhesion molecule, L-selectin. Therefore, human vascular endothelium cDNA libraries were screened to identify sulfotransferases homologous to chicken chondroitin 6-sulfotransferase (C6ST). Two sulfotransferases were identified: CHST2, a novel 530-amino-acid sulfotransferase with a carboxyl-terminal region that was 45 and 43% homologous with those of human and chicken C6ST, respectively, and CHST1, which was identical to human C6ST. Northern blot analysis showed that CHST2 was broadly expressed among tissues. The CHST2 gene mapped to human chromosome 3q24 close to 3q25. Thus, this study identified two sulfotransferases expressed by vascular endothelial cells that may contribute to the generation of L-selectin ligands during inflammatory responses.  相似文献   

11.
It has been suggested that the human C1qRp is a receptor for the complement component C1q; however, there is no direct evidence for an interaction between C1q and C1qRp. In this study, we demonstrate that C1q does not show enhanced binding to C1qRp-transfected cells compared with control cells. Furthermore, a soluble recombinant C1qRp-Fc chimera failed to interact with immobilized C1q. The proposed role of C1qRp in the phagocytic response in vivo is also unsupported in that we demonstrate that this molecule is not expressed by macrophages in a variety of human tissues and the predominant site of expression is on endothelial cells. Studies on the rodent homolog of C1qRp, known as AA4, have suggested that this molecule may function as an intercellular adhesion molecule. Here we show that C1qRp is the Ag recognized by several previously described mAbs, mNI-11 and two anti-CD93 Abs (clones X2 and VIMD2b). Interestingly, mNI-11 (Fab') has been shown to promote monocyte-monocyte and monocyte-endothelial cell adhesive interactions. We produced a recombinant C1qRp-Fc chimera containing the C-type lectin-like domain of C1qRp and found specific binding to vascular endothelial cells in sections of inflamed human tonsil, indicating the presence of a C1qRp ligand at this site. This interaction was Ca(2+) independent and was not blocked by our anti-C1qRp mAb BIIG-4, but was blocked by the proadhesive mAb mNI-11. Collectively, these data indicate that C1qRp is not a receptor for C1q, and they support the emerging role of C1qRp (here renamed CD93) in functions relevant to intercellular adhesion.  相似文献   

12.
C1q is the initiator of the classical complement pathway and opsonizes apoptotic cells to facilitate phagocytosis. Deficiency of C1q is the strongest known risk factor for development of systemic lupus erythematosus (SLE), which appears to be related to ensuing impaired clearance of apoptotic material. The objective of the current study was to investigate new ligands for C1q on the surface of apoptotic cells. We revealed that the two phospholipid-binding proteins annexin A2 and A5 are, beside DNA, significant C1q ligands. We furthermore, demonstrated that C1q binds directly to histones exposed on the surface of dying cells but we did not detect significant interaction with phosphatidylserine. The complement inhibitors C4b-binding protein and factor H also interact with dying cells, most likely to decrease complement activation beyond the level of C3 to allow noninflammatory clearance. Despite the fact that C4b-binding protein, factor H, and C1q share some ligands on dying cells, we showed that these three proteins did not compete with one another for binding to apoptotic cells. We additionally demonstrated that the way in which apoptosis is induced influenced both the degree of apoptosis and the binding of C1q. The knowledge, that annexin A2 and A5 act as ligands for C1q on apoptotic cells, sheds new light on the pathophysiology of autoimmune diseases.  相似文献   

13.
Elastin microfibril interface-located proteins (EMILINs) constitute a family of extracellular matrix (ECM) glycoproteins characterized by the presence of an EMI domain at the N terminus and a gC1q domain at the C terminus. EMILIN1, the archetype molecule of the family, is involved in elastogenesis and hypertension etiology, whereas the function of EMILIN2 has not been resolved. Here, we provide evidence that the expression of EMILIN2 triggers the apoptosis of different cell lines. Cell death depends on the activation of the extrinsic apoptotic pathway following EMILIN2 binding to the TRAIL receptors DR4 and, to a lesser extent, DR5. Binding is followed by receptor clustering, colocalization with lipid rafts, death-inducing signaling complex assembly, and caspase activation. The direct activation of death receptors by an ECM molecule that mimics the activity of the known death receptor ligands is novel. The knockdown of EMILIN2 increases transformed cell survival, and overexpression impairs clonogenicity in soft agar and three-dimensional growth in natural matrices due to massive apoptosis. These data demonstrate an unexpected direct and functional interaction of an ECM constituent with death receptors and discloses an additional mechanism by which ECM cues can negatively affect cell survival.  相似文献   

14.
Surfactant protein A regulates complement activation.   总被引:4,自引:0,他引:4  
Complement proteins aid in the recognition and clearance of pathogens from the body. C1, the first protein of the classical pathway of complement activation, is a calcium-dependent complex of one molecule of C1q and two molecules each of C1r and C1s, the serine proteases that cleave complement proteins. Upon binding of C1q to Ag-bound IgG or IgM, C1r and C1s are sequentially activated and initiate the classical pathway of complement. Because of structural and functional similarities between C1q and members of the collectin family of proteins, including pulmonary surfactant protein A (SP-A), we hypothesized that SP-A may interact with and regulate proteins of the complement system. Previously, SP-A was shown to bind to C1q, but the functional significance of this interaction has not been investigated. Binding studies confirmed that SP-A binds directly to C1q, but only weakly to intact C1. Further investigation revealed that the binding of SP-A to C1q prevents the association of C1q with C1r and C1s, and therefore the formation of the active C1 complex required for classical pathway activation. This finding suggests that SP-A may share a common binding site for C1r and C1s or Clq. SP-A also prevented C1q and C1 from binding to immune complexes. Furthermore, SP-A blocked the ability of C1q to restore classical pathway activity to C1q-depleted serum. SP-A may down-regulate complement activity through its association with C1q. We hypothesize that SP-A may serve a protective role in the lung by preventing C1q-mediated complement activation and inflammation along the delicate alveolar epithelium.  相似文献   

15.
Cultured mouse fibroblasts (L cells) respond to whole C with a slow hyperpolarization. Among the C components tested, C1q was found to be most effective. In contrast, the cell did not respond to C1, in which the collagen-like region of the C1q molecule is masked. The C1q-induced hyperpolarizing response was inhibited by collagen or C1q-specific antisera. Human diploid skin fibroblasts (Flow 1,000 cells) also exhibited similar membrane potential changes in response to whole C or C1q. After repeated applications of C1q, the cell membrane became unresponsive (desensitized). The treatment of L cells with pronase E inhibited the C1q-induced response, whereas the response to ATP, which is known to interact to its own receptor, was still preserved. The reversal potential of C responses was close to the K+ equilibrium potential. The hyperpolarizing response was inhibited by a blocker of Ca2+-activated K+ channels in fibroblasts (quinine), by deprivation of extracellular Ca2+ or by a Ca2+ channel blocker (nifedipine). By means of Ca2+-selective microelectrodes, the cytosolic free Ca2+ concentration was found to increase from 126 to 206 nM upon stimulation of L cells with C1q. Using an agarose-well method, L cells were observed to migrate predominantly toward C1q or whole C. It is concluded that the fibroblasts have the C1q receptor sensitive to pronase E and that activation of C1q receptors gives rise to Ca2+ influx, triggering an increase in the cytosolic free Ca2+ ions, which in turn induces a hyperpolarizing response as a result of the stimulation of Ca2+-activated K+ channels and initiates chemotaxis to C1q.  相似文献   

16.
The similarities in the structure and properties of C1q and collagen prompted us to examine the susceptibility of C1q to human polymorphonuclear leukocyte collagenase. Incubation of C1q with a collagenase preparation resulted in no change in (1) the binding of C1q to immunoglobulin aggregates, (2) the hemolytic function of C1q as measured by reconstitution of C1q-depleted serum in immune hemolysis, or (3) the structural properties of C1q as revealed by gel electrophorettic patterns of the whole molecule or its polypeptide chains. In contrast, rapid inactivation and degradation of C1q was caused by leukocyte elastase.The collagenase preparation was, however, capable of cleaving reduced and carboxamidomethylated C1q into discrete fragments. This activity was attributed to a gelatinase present in the enzyme preparation since (1) the cleavage reaction was inhibited by denatured collagen but not by native collagen and (2) a collagenase fraction free of gelatinolytic activity could not degrade reduced and carboxamidomethylated C1q, while a gelatinase fraction devoid of collagenase activity retained the capacity to effect reduced and carboxamidomethylated C1q. Both collagenase and gelatinase activities were activated from the latent form by trypsin, and inhibited by EDTA.Therefore, it appears that native C1q lacks the structural features present in collagen which are recognized by leukocyte collagenase for hydrolytic action even though the denatured molecule still contains that region capable of being cleaved by gelatinase.  相似文献   

17.
Previous research has shown that an antimicrobial peptide (AMP) of the myticin class C (Myt C) is the most abundantly expressed gene in cDNA and suppressive subtractive hybridization (SSH) libraries after immune stimulation of mussel Mytilus galloprovincialis. However, to date, the expression pattern, the antimicrobial activities and the immunomodulatory properties of the Myt C peptide have not been determined. In contrast, it is known that Myt C mRNA presents an unusual and high level of polymorphism of unidentified biological significance. Therefore, to provide a better understanding of the features of this interesting molecule, we have investigated its function using four different cloned and expressed variants of Myt C cDNA and polyclonal anti-Myt C sera. The in vivo results suggest that this AMP, mainly present in hemocytes, could be acting as an immune system modulator molecule because its overexpression was able to alter the expression of mussel immune-related genes (as the antimicrobial peptides Myticin B and Mytilin B, the C1q domain-containing protein MgC1q, and lysozyme). Moreover, the in vitro results indicate that Myt C peptides have antimicrobial and chemotactic properties. Their recombinant expression in a fish cell line conferred protection against two different fish viruses (enveloped and non-enveloped). Cell extracts from Myt C expressing fish cells were also able to attract hemocytes. All together, these results suggest that Myt C should be considered not only as an AMP but also as the first chemokine/cytokine-like molecule identified in bivalves and one of the few examples in all of the invertebrates.  相似文献   

18.
19.
C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.  相似文献   

20.
The glial cell line-derived neurotrophic factor (GDNF) family comprise a subclass of cystine-knot superfamily ligands that interact with a multisubunit receptor complex formed by the c-Ret tyrosine kinase and a cystine-rich glycosyl phosphatidylinositol-anchored binding subunit called GDNF family receptor alpha (GFRalpha). All four GDNF family ligands utilize c-Ret as a common signaling receptor, whereas specificity is conferred by differential binding to four distinct GFRalpha homologues. To understand how the different GFRalphas discriminate ligands, we have constructed a large set of chimeric and truncated receptors and analyzed their ligand binding and signaling capabilities. The major determinant of ligand binding was found in the most conserved region of the molecule, a central domain predicted to contain four conserved alpha helices and two beta strands. Distinct hydrophobic and positively charged residues in this central region were required for binding of GFRalpha1 to GDNF. Interaction of GFRalpha1 and GFRalpha2 with GDNF and neurturin required distinct subsegments within this central domain, which allowed the construction of chimeric receptors that responded equally well to both ligands. C-terminal segments adjacent to the central domain are necessary and have modulatory function in ligand binding. In contrast, the N-terminal domain was dispensable without compromising ligand binding specificity. Ligand-independent interaction with c-Ret also resides in the central domain of GFRalpha1, albeit within a distinct and smaller region than that required for ligand binding. Our results indicate that the central region of this class of receptors constitutes a novel binding domain for cystine-knot superfamily ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号