首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes occurring in the lysosome population were assessed by the results of studies of intracellular distribution of the marker lysosome enzymes--acid phosphatase and acid RNAase. An acute (pure CCl4-0.15 ml per 100 g of weight into the stomach) and chronic (inhalation poisoning after Rabinovici and Wiener) toxic hepatitis was accompanied by an increase in the specific activity of the enzymes in the fraction of heavy mitochondria, this pointing to the change in the sedimentation properties of the lysosomes. An increase in "nonprecipitable" activity of the acid RNA-ase in chronic toxic hepatitis served as the sign of injury of the lysosome membranes.  相似文献   

2.
We examined the effect of L-tryptophan (Trp) administration on the reversion of CCl(4)-induced chronic liver injury after hepatotoxicant withdrawal in rats. When rats treated with CCl(4) twice a week for 6 weeks were released from CCl(4) treatment for 2 weeks, there was an incomplete reversion of liver injury. The reversion was enhanced by 2 weeks of daily intraperitoneal administration of Trp (50 mg/kg body weight), starting just after CCl(4) withdrawal. There were increases in the levels of thiobarbituric acid reactive substances, an index of lipid peroxidation, Ca(2+), triglycerides, and Trp, and decreases in tryptophan 2,3-dioxygenase activity and serum triglyceride concentrations in the liver of rats treated with CCl(4) for 6 weeks. Serum albumin concentrations and in vitro hepatic protein synthesis activity did not change in the CCl(4)-treated rats. The changes in the CCl(4)-treated rats were partially attenuated 2 weeks after CCl(4) withdrawal. The attenuation was enhanced by 2 weeks of daily Trp administration. The increases in hepatic thiobarbituric acid reactive substances and triglycerides and the decreases in hepatic tryptophan 2,3-dioxygenase activity and serum triglyceride concentrations observed 2 weeks after CCl(4) withdrawal were almost completely attenuated by Trp administration. In vitro hepatic protein synthesis in CCl(4)-treated and untreated rats was increased by 2 weeks of daily Trp administration. These results indicate that Trp administration promotes the reversion of pre-established chronic liver injury in rats treated with CCl(4,) and suggest that Trp exerts this effect by enhancing the improvement of several parameters of liver dysfunction associated with chronic liver injury and by stimulating hepatic protein synthesis.  相似文献   

3.
Effect of PGI2 in carbon tetrachloride-induced liver injury   总被引:1,自引:0,他引:1  
The hepatoprotective effect of prostacycline was studied after in vitro and in vivo CCl4 liver injury. It was found that PGI2 could partly restore the amino acid incorporation after in vitro CCl4 poisoning. In the in vivo system PGI2 was capable of decreasing the elevated SGOT levels and the accumulated triglyceride in the liver, and to increase hepatic glycogen content 24 hours after CCl4 injury.  相似文献   

4.
A comparative study was made of cytochrome P-450 content and the histological pattern of the development and elimination of necrotic foci arising in the liver of CBA mice after inhalation of CCl4 vapour. Two hours after the inhalation the content of cytochrome P-450 was reduced by a factor of 1.7, and in 17, 24, and 48 hours--by a factor of 6. The necrotized area was about 40% of the total liver lobe area. It is supposed that the selective (CCl4) damage of the central lobe hepatocytes was related to the marked differences between the cytochrome P-450 content in different areas of the lobe.  相似文献   

5.
We investigated the relationship between DNA degradation and lysosome activity (loss of lysosomal integrity) in necrotic cell death induced by carbon tetrachloride (CCl4) and dimethylnitrosamine (DMN): coagulation necrosis and hemorrhagic necrosis, respectively. TdT-mediated dUTP-biotin nick end-labeling (TUNEL) and enzyme histochemistry for acid phosphatase were performed in both models and results were analyzed by light microscopy, electron microscopy, and confocal laser scanning microscopy (CLSM). In the CCl(4)-injected liver, TUNEL staining was closely associated with release of lysosomal enzymes into the cytoplasm, and intranuclear deposition of lysosomal enzymes took place at an early stage of subcellular damage. In the DMN-injected liver, TUNEL-positive nuclei tended to have well-preserved lysosomes and centrally localized TUNEL signals. It was assumed that acute hepatocellular damage in the CCl4-injected liver would be characterized by necrotic cell death with lysosome activation and that damage in the DMN-injected liver would be necrotic cell death without lysosome activation. In the DMN-injected liver, DNA degradation may be selectively induced in the nuclear center, in which heterochromatin (including inactive chromatin) is believed to be a target. We concluded that necrotic cell death, i.e., DNA degradation, would be at least divided into two types, with/without association with lysosome activation, represented by necrotic cell death in the CCl4-injected liver and that in the DMN-injected liver.  相似文献   

6.
In rats to which E. coli endotoxin (250 micrograms/kg i.p.) was administered 24 h before they were given tetrachlormethane (CCl4) (1.5 ml/kg intragastrically), stimulation of liver DNA synthesis was observed during the first 48 h after administration of the hepatatoxin. In experimental rats to which prodigiosan (a Serratia marcescens polysaccharide, 250 micrograms/kg i.p.) was administered 24 h before CCl4 (1.5 ml/kg i.p.), liver damage 24 h after CCl4 poisoning was expressed less--judging from the size of liver necrosis and the size of glycogen-free zones in the liver lobules than in the controls. To elucidate the role of activated macrophages in the induction of liver resistance to CCl4, liver injury caused by this hepatotoxin was compared after the pre-administration of protein extract from the Kupffer cells or hepatocytes of prodigiosan-stimulated rats. In rats given the larger dose of Kupffer cell extract (6 mg/ml i.p.), the necrotic foci formed after the administration of CCl4 were significantly smaller. The results confirm the conception that liver macrophages participate in the development of resistance to CCl4.  相似文献   

7.
Physical and chemical properties of the rat liver lysosomes with single Triton WR 1339 overloading were studied during the administration of a detergent to intact rats and those with acute toxic hepatitis. Administration of the latter to intact animals was accompanied by a reduction of the floating density of the particles, solubilization of the lysosome enzymes and by increased fragility of the particles in the hypotonic medium. Lysosomes of the hepatocytes in rats with toxic hepatitis also displayed signs of overloading of the vacuolar apparatus with the preparation administered. The most pronounced solubilization of the lysosomal enzymes beta-galactosidase, acid RNA-ase, cathepsin D--was noted in case of combined action of CCl4 and Triton WR 1339 24, 48, 72 hours and 7 days after the CCl4 poisoning. Possible consequences of overloading of the vacuolar apparatus of the rat hepatocytes are discussed.  相似文献   

8.
Cell-cycle induction in hepatocytes protects from prolonged tissue damage after toxic liver injury. Early growth response (Egr)-1(-/-) mice exhibit increased liver injury after carbon tetrachloride (CCl(4)) exposure and reduced TNF-α production. Because TNF-α is required for prompt cell-cycle induction after liver injury, here, we tested the hypothesis that Egr-1 is required for timely hepatocyte entry into the cell cycle after CCl(4)-induced liver injury. Acute liver injury was induced by a single injection of CCl(4). Assays were employed to assess indices of the cell cycle in liver after CCl(4) exposure. Bromodeoxyuridine incorporation peaked in wild-type mice at 48 h after CCl(4) but was reduced by 80% in Egr-1(-/-) mice. Proliferating-cell nuclear-antigen immunohistochemistry revealed blocks in cell-cycle entry and progression to DNA synthesis in Egr-1-deficient mice 48 h after CCl(4). Cyclin D, important for G0/G1 progression, was reduced at baseline and 36 h after CCl(4). Cyclin E1, required for G1/S-phase transition, was reduced in Egr-1(-/-) mice 24 and 48 h after CCl(4) exposure and was associated with reduced phosphorylation of the retinoblastoma protein. Proliferation in Egr-1(-/-) mice was delayed, rather than blocked, because indices of cell-cycle progression were restored 72 h after CCl(4) exposure. We concluded that Egr-1 was required for prompt cell-cycle entry (G0- to G1-phase) and G1/S-phase transition after toxic liver injury. These data support the hypothesis that Egr-1 provides hepatoprotection in the CCl(4)-injured liver, attributable, in part, to timely cell-cycle induction and progression.  相似文献   

9.
This study is focused on the role of UCP-2 in hepatic oxidative metabolism following acute CCl(4) administration to rats. UCP-2 mRNA, almost undetectable in the liver of controls, was significantly increased 24 h after CCl(4) administration, peaked at 72 h and then tended to disappear. UCP-2 protein, undetectable in controls, increased 48-72 h after CCl(4) treatment. Experiments with isolated liver cells indicated that in control rats UCP-2 was expressed in non-parenchymal cells and not in hepatocytes, whereas in CCl(4)-treated rats UCP-2 expression was induced in hepatocytes and was not affected in non-parenchymal cells. Addition of CCl(4) to the culture medium of hepatocytes from control rats failed to induce UCP-2 expression. Liver mitochondria from CCl(4)-treated rats showed an increase of H(2)O(2) release at 12-24 h, followed by a rise of TBARS. Vitamin E protected liver from CCl(4) injury and reduced the expression of UCP-2. Treatment with GdCl(3) prior to CCl(4), in order to inhibit Kupffer cells, reduced TBARS and UCP-2 mRNA increase in hepatic mitochondria. Our data indicate that CCl(4) induces the expression of UCP-2 in hepatocytes with a redox-dependent mechanism involving Kupffer cells. A role of UCP-2 in moderating CCl(4)-induced oxidative stress during tissue regeneration after injury is suggested.  相似文献   

10.
Molecular mechanisms involved in mediating alteration in cell matrix interaction have been examined by studying the changes in the activity of matrix metalloproteinases (MMPs) in CCl4-induced regenerating liver, using zymography and ELISA. Activity of MMPs (72 kD, 92 kD and 130 kD gelatinases) in the rat liver increased progressively during acute injury till the 4th day and then decreased to near normal level after CCl4 administration (0.5 ml/100 g body wt.) on the 6th day. Hepatocyte lysate of injured liver on the 4th day showed significantly higher levels of MMP2 and MMP9 compared to the control. In the culture medium of hepatocytes, the levels of MMP2 and MMP9 increased progressively with the duration of culture, indicating that hepatocytes are the major source of these MMPs in regenerating liver. These results suggest an involvement of MMPs in matrix degradation and remodeling during regeneration after acute liver injury induced by CCl4.  相似文献   

11.
CCl4致小鼠肝损伤中几种免疫介质含量变化的研究   总被引:3,自引:0,他引:3  
本文通过研究CCl4致小鼠肝损伤组织匀浆和血浆一些免疫介质含量的变化以探讨这些免疫介质在CCl4诱发肝损伤过程中作用机制。分别选用30只健康成年小鼠,雌雄各半,随机分成对照组和CCl4负荷组,每组15只。通过腹腔注射CCl4诱发肝损伤后,分别在第2、4、6周检测肝组织匀浆cAMP、cGMP和MDA及血浆IL-2、TNF-α水平的变化。结果显示,在整个实验期内,CCl4组肝组织匀浆cAMP水平均低于或明显低于对照组;cGMP在实验第2周后,高于或显著高于对照组;cAMP/cGMP比值呈现下降趋势,并低于或明显低于对照组;MDA含量明显高于对照组。在整个实验期内,CCl4组血浆IL-2水平下降或显著下降;TNF-α水平则均高于或显著高于对照组。结果提示,CCl4负荷诱发免疫介质cAMP、cGMP、TNF-α和IL-2发生剧烈变化,在介导肝损伤过程中可能起重要作用。  相似文献   

12.
Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical‐induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild‐type (WT) mice. CCl 4‐induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin‐related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4‐induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress.  相似文献   

13.
Central neuropeptides play important roles in many physiological and pathophysiological regulation mediated through the autonomic nervous system. In regard to the hepatobiliary system, several neuropeptides act in the brain to regulate bile secretion, hepatic blood flow, and hepatic proliferation. Central injection of corticotropin-releasing factor (CRF) aggravates carbon tetrachloride (CCl4)-induced acute liver injury through the sympathetic nervous pathway in rats. However, still nothing is known about a role of endogenous neuropeptides in the brain in hepatic pathophysiological regulations. Involvement of endogenous CRF in the brain in CCl4-induced acute liver injury was investigated by centrally injecting a CRF receptor antagonist in rats. Male fasted Wistar rats were injected with CRF receptor antagonist alpha-helical CRF-(9-41) (0.125-5 microg) intracisternally just before and 6 h after CCl4 (2 ml/kg) administration, and blood samples were obtained before and 24 h after CCl4 injection for measurement of hepatic enzymes. The liver sample was removed 24 h after CCl4 injection, and histological changes were examined. Intracisternal alpha-helical CRF-(9-41) dose dependently (0.25-2 microg) reduced the elevation of alanine aminotransferase and aspartate aminotransferase levels induced by CCl4. Intracisternal alpha-helical CRF-(9-41) reduced CCl4-induced liver histological changes, such as centrilobular necrosis. The effect of central CRF receptor antagonist on CCl4-induced liver injury was abolished by sympathectomy and 6-hydroxydopamine pretreatment but not by hepatic branch vagotomy or atropine pretreatment. These findings suggest the regulatory role of endogenous CRF in the brain in experimental liver injury in rats.  相似文献   

14.
Mice were administered a single dose of carbon tetrachloride (CCl(4)) to induce acute liver injury. We found that lactate dehydrogenase (LDH) and glutamic pyruvic transaminase (GPT) levels in serum, as well as the level of thiobarbituric acid reaction substances (TBARS) in liver homogenate increased significantly in a manner both dose dependent and time dependent after CCl(4) administration. Such results suggest that the liver is susceptible to CCl(4) treatment and that lipid peroxidation is associated with CCl(4)-induced liver injury. The spin-trapping electron paramagnetic resonance (EPR) method was used to detect nitric oxide (NO) level in liver. The chemiluminescence method was also employed to measure the NO(2)(-)/NO(3)(-) concentration in serum. The NO levels in liver tissues and NO(2)(-)/NO(3)(-) concentration in serum were found to decrease significantly both in a dose-dependent manner and in time course after CCl(4) treatment. The nitric oxide synthase (NOS) II activity in the liver, in contrast, was found to increase significantly. Our study suggests that not only should the expression of NOS be analyzed but NO organ and blood concentration must be measured in the study of diseases involving nitric oxide. L-arginine treatment had no significant effect on the liver function of CCl(4)-treated mice. It was found that NO donor sodium nitroprusside (SNP; 50 or 100 microg/kg) treatment resulted in decreases of LDH, GPT, and TBARS levels, leading to a protective effect on CCl(4)-treated mice. On the other hand, N(G)-nitro-L-arginine methyl ester (L-NAME, 100 or 300 mg/kg) treatment caused more severe liver damage. Moreover, we have found in an in vitro EPR study that SNP could scavenge lipid peroxyl radical LOO&z.rad;. The above results together suggest that NO may protect CCl(4)-induced liver injury through scavenging lipid radical, inhibiting the lipid peroxidation chain reaction. On the basis of our analysis, we put forth two explanations for the stated discrepancy between NOS II and NO production: (i) NO was used up gradually in terminating lipid peroxidation and (ii) NADPH was depleted (on the basis of correlation evidence only).  相似文献   

15.
A pharmaceutical composition PENNEL comprising garlic oil (GO) and dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate (DDB) as ingredients active for phase II enzyme induction and liver protection, respectively, has been used as a curative preparation for patients with acute or chronic viral hepatitis. In spite of the wide clinical use of PENNEL in Asian and Middle Eastern countries, whether GO+DDB treatment synergistically protects the liver from injuries potentiated by GSH deficiency compared to the individual treatment has not been determined. This study investigated the effects of GO+DDB in comparison with each ingredient alone on chemical-induced liver injury potentiated by a GSH depleting agent. Rats that had been daily pretreated with GO+DDB, GO, DDB, ursodesoxycholic acid or silymarin for 6 days were exposed to buthionine sulfoximine (BSO) and then injected with a single dose of CCl4. The effects of the agents on acute liver toxicities induced by BSO, CCl4 or BSO+CCl4 were assessed by blood biochemistry and histopathology. GO+DDB pretreatment effectively prevented increases in plasma aminotransferases or lactate dehydrogenase activities in rats exposed to BSO+CCl4, compared to GO or DDB treatment alone. Whereas BSO potentiated CCl4-induced liver injuries as evidenced by elevations in central necrosis, hepatocyte degeneration and inflammation, pretreatment with GO+DDB abrogated BSO+CCl4-induced liver injuries more efficaciously than did that with GO or DDB. The hepatoprotective effect of GO+DDB was superior to that of ursodesoxycholic acid or silymarin. Also, blood biochemistry indicated that GO+DDB pretreatment prevented increases in plasma triglyceride contents in rats insulted with CCl4 or BSO+CCl4. The present study demonstrated that GO+DDB, when daily pretreated for six consecutive days, exerted synergistic protection of the liver from chemical-induced injury potentiated by the condition of GSH deficiency, and has additional advantages in lowering the plasma lipids.  相似文献   

16.
The exact functional role of nitric oxide (NO) in liver injury is currently a source of controversy. NO is enzymatically synthesized by nitric oxide synthase (NOS). In this study, we assessed the role of inducible NOS (iNOS) in carbon tetrachloride (CCl4)-induced acute liver injury using inhibitors of iNOS, and an NO donor. Adult ICR mice were injected with CCl4 with or without the iNOS inhibitors (5-methylisothiourea hemisulfate [SMT] and l-N6-(1-iminoethyl)-lysine [L-NIL]) and an NO donor (Sodium Nitroprusside [SNP]). Blood and liver tissues were collected for analysis. Immunohistochemistry (IHC), serum alanine aminotransferase (ALT), serum total 8-isoprostane analysis, RT-PCR, Western Blotting (WB) and EMSA were done. Our results showed increased levels of ALT, necrosis, total 8-isoprostane and nitrotyrosine after CCl4 administration. iNOS inhibitors and SNP abrogated these effects but the effect was more pronounced with SMT and L-NIL. RT-PCR, WB and IHC in CCl4-treated mice demonstrated upregulation of TNF-alpha, iNOS, and COX-2. The administration of iNOS inhibitors with CCl4 diminished the expression of these proinflammatory mediators. NF-kappaB was also upregulated in CCl4-treated mice and was reversed in mice pretreated with iNOS inhibitors. SNP pretreated mice also showed a lower expression of COX-2 when compared with CCl4 treated mice but TNF-alpha, iNOS and NF-kappaB activity were unaffected. We propose that a high level of nitric oxide is associated with CCl4-induced acute liver injury and the liver injury can be ameliorated by decreasing the NO level with iNOS inhibitors and an NO donor with the former more effective in reducing CCl4-induced liver injury.  相似文献   

17.
Effects of kumari asav, kumari kalp, arogyavardhini and tamra bhasma used in Ayurved and Siddha medicine for the treatment of liver disorders have been studied on acid, alkaline and lipoprotein lipase activities of liver, adipose tissue and kidney and hormone sensitive lipase activity of adipose tissue following CCl4 induced liver injury in albino rats. The treatments of CCl4 and the above drugs show significant alterations in the lipolytic activities of liver, adipose tissue and kidney. Role of these enzymes during hepatoprotection by above drugs has been discussed.  相似文献   

18.
The co-existence of two mannose-6-phosphate receptors (CD-MPR and CI-MPR) in most cell types is still a dilemma to be resolved. In this study, some parameters were measured to explore lysosomal apparatus evolution in rat liver during perinatal development, and establish a possible involvement of CD- and/or CI-MPR in lysosome maturation. Activity of four acid hydrolases was measured in the whole organ at different ages and it was found that N-acetyl-beta-D-glucosaminidase (NAG), beta-galactosidase, and beta-glucuronidase change during development, reaching a peak at the 10th day after birth. These results correlated with the expression and binding properties of CD-MPR previously reported. We also used a method that recognizes phosphomannosylated ligands by using purified biotinylated CI-MPR as a probe, and found that the highest concentrations of ligands also appear around the 10th day. Binding assays were also carried out, incubating endogenous NAG from 10-day-old and adult rats with membranes from their respective ages, and the results indicated that cation-dependent mannose-6-phosphate receptor (CD-MPR) has more impact on trafficking of the enzyme at the 10th day after birth. We concluded that lysosome maturation in the rat liver occurs around the 10th day after birth, and that the CD-MPR may participate in that event.  相似文献   

19.
We previously reported that the mold Monascus anka, traditionally used for fermentation of food, showed antioxidant and hepatoprotective actions against chemically induced liver injuries. In the present study, the antioxidant component of M. anka was isolated and identified. The antioxidant was elucidated to be dimerumic acid. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical was significantly scavenged by the antioxidant whereas hydroxyl radical and superoxide anion were moderately scavenged. When the antioxidant (12 mg/kg) was given to mice prior to carbon tetrachloride (CCl(4), 20 microl/kg, ip) treatment, the CCl(4)-induced liver toxicity in mice seen in an elevation of serum aspartate aminotransferase and alanine aminotransferase activities was depressed, suggesting the hepatoprotective action of the antioxidant. The liver microsomal glutathione S-transferase activity, which is known to be activated by oxidative stress or active metabolites, was increased by CCl(4) treatment and the increase was also depressed by pretreatment with the mold antioxidant. Thus these data confirmed that the dimerumic acid isolated from M. anka is the potential antioxidant and protective against CCl(4)-induced liver injury.  相似文献   

20.
Melatonin is an indolamine, mainly secreted by the pineal gland into the blood of mammalian species. The potential for protective effects of melatonin on carbon tetrachloride (CCl(4))-induced acute liver injury in rats was investigated in this work. CCl(4) exerts its toxic effects by generation of free radicals; it was intragastrically administered to male Wistar rats (4 g kg(-1) body weight) at 20 h before the animals were decapitated. Melatonin (15 mg kg(-1) body weight) was administered intraperitoneally three times: 30 min before and at 2 and 4 h after CCl(4) injection. Rats injected with CCl(4) alone showed significant lipid and hydropic dystrophy of the liver, massive necrosis of hepatocytes, marked increases in free and conjugated bilirubin levels, elevation of hepatic enzymes (alanine aminotransferase and aspartate aminotransferase) in plasma, as well as NO accumulation in liver and in blood. Melatonin administered at a pharmacological dose diminished the toxic effects of CCl(4). Thus it decreased both the structural and functional injury of hepatocytes and clearly exerted hepatoprotective effects. Melatonin administration also reduced CCl(4)-induced NO generation. These findings suggest that the effect of melatonin on CCl(4)-induced acute liver injury depends on the antioxidant action of melatonin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号