首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated temperature causes degeneration and disappearance of the germ cells in the males of scrotal mammals. It was recently shown that heat-induced germ cell degeneration occurs also in fish but, unlike in mammals, it occurs not only in males but also in females. The purpose of this study was to clarify the histological process and dynamics of heat-induced germ cell disappearance in pejerrey Odontesthes bonariensis larvae and juveniles. Monosex and mixed-sex fish produced by thermal manipulation of sex (temperature-dependent sex determination) were subjected to 29 degrees C for periods between 1 and 12 weeks, and used to analyze, by histological methods, the changes in gonadal size and the number of normal and degenerating germ cells. Groups exposed to 29 degrees C for 8-12 weeks were subsequently transferred to 24 degrees C to verify if any gonadal damage would be permanent. Germ cell degeneration, histologically characterized by nuclear pyknosis or eosinophilia and cytoplasmic eosinophilia, was observed with increasing frequency at higher temperatures (29>24> 17 degrees C) and more in males than in females. Clear degenerative changes in the germinal epithelium usually began within one week of exposure to 29 degrees C and appeared clearer in females than in males. Complete loss of germ cells was observed only in individuals exposed for periods of 8-12 weeks to 29 degrees C but no treatment produced 100% sterile fish. Germ cells that remained in the gonads after exposure to 29 degrees C retained the capacity to rapidly recolonize germ cell-depleted areas, suggesting that the associated somatic cells in the gonads are little or not affected by this temperature.  相似文献   

2.
The signaling events leading to apoptosis can be divided into two major pathways, involving either mitochondria (intrinsic) or death receptors (extrinsic). In a recent study, we have shown the involvement of the mitochondria-dependent apoptotic pathway in heat-induced male germ cell apoptosis in the rat. In additional studies, using the gld (generalized lymphoproliferation disease) and lprcg (lymphoproliferation complementing gld) mice, which harbor loss-of-function mutations in Fas L and Fas, respectively, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system is not required for heat-induced germ cell apoptosis in the testis. In the present study, we have found that the initiation of apoptosis in wild-type mice was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. The relocation of Bax is accompanied by sequestration of ultracondensed mitochondria into paranuclear areas of apoptotic germ cells, cytosolic translocation of mitochondrial cytochrome c and DIABLO, and is associated with activation of the initiator caspase 9 and the executioner caspase 3. Similar events were also noted in both gld and lprcg mice. Taken together, these results indicate that the mitochondria-dependent pathway is the key apoptotic pathway for heat-induced male germ cell death in mice.  相似文献   

3.
Functional role of caspases in heat-induced testicular germ cell apoptosis   总被引:3,自引:0,他引:3  
In the present study, we determined whether a pan caspase inhibitor could prevent or attenuate heat-induced germ cell apoptosis. Groups of five adult (8 wk old) C57BL/6 mice pretreated with vehicle (DMSO) or Quinoline-Val-Asp (Ome)-CH2-O-Ph (Q-VD-OPH), a new generation broad-spectrum caspase inhibitor, were exposed once to local testicular heating (43 degrees C for 15 min) and killed 6 h later. The inhibitor (40 mg/kg body weight) or vehicle was administered intraperitoneally (i.p.) 1 h before local testicular heating. Germ cell apoptosis was detected by TUNEL assay and quantitated as number of apoptotic germ cells per 100 Sertoli cells at stages XI-XII. Compared with controls (16.8 +/- 3.1), mild testicular hyperthermia within 6 h resulted in a marked activation (277.3 +/- 21.6) of germ cell apoptosis, as previously reported by us. Q-VD-OPH at this dose markedly inhibited caspase 3 activation and significantly prevented (by 67.0%) heat-induced germ cell apoptosis. Q-VD-OPH-mediated rescue of germ cells was independent of cytosolic translocation of mitochondrial cytochrome c and DIABLO. Electron microscopy further revealed normal appearance of these rescued cells. Similar protection from heat-induced germ cell apoptosis was also noted after pretreatment with minocycline, a second-generation tetracycline that effectively inhibits cytochrome c release and, in turn, caspase activation. Collectively, the present study emphasizes the role of caspases in heat-induced germ cell apoptosis.  相似文献   

4.
This study investigates the role of caspase 2 in apoptotic signaling of nonhuman primate male germ cells triggered by mild testicular hyperthermia, testosterone (T(e)) implants, or by combined interventions. Mean incidence of germ cell apoptosis increased significantly by Day 3 in the heat (H(e)) alone group and by Day 8 in the Te alone group but peaked at Day 3 in H(e) + T(e) group. We found activation of caspase 2 in both germ cells and Sertoli cells after induction of apoptosis. Most notably, active caspase 2 immunoreactivity was detected only in those germ cells susceptible to apoptosis compared with controls, where little or no such staining is detected. To further explore the role of caspase 2 in regulating male germ cell death, we next evaluated the efficacy of caspase 2 inhibition in preventing or attenuating heat-induced germ cell apoptosis in rats. Caspase 2 inhibition significantly (P < 0.05) prevented such heat-induced germ cell apoptosis. The protection offered by the caspase 2 inhibitor occurred upstream of mitochondria, involving suppression of mitogen-activated protein kinase (MAPK) 14 activation and inducible nitric oxide synthase (NOS2) induction and, in turn, suppression of cytochrome c-mediated death pathway. Together, our results show that caspase 2 is activated in male germ cells undergoing apoptosis in nonhuman primates after heat stress, hormonal deprivation, or after combined interventions. Blockade of caspase 2 activation prevents heat-induced germ cell apoptosis in rats by suppressing the MAPK14- and NO-mediated intrinsic pathway signaling.  相似文献   

5.
Deciphering the pathways of germ cell apoptosis in the testis   总被引:8,自引:0,他引:8  
A growing body of evidence demonstrates that germ cell death both spontaneous (during normal spermatogenesis) and that induced by suppression of hormonal support or increased scrotal temperature occurs via apoptosis. The mechanisms by which these proapoptotic stimuli activate germ cell apoptosis are not well understood. In order to provide some insight, here we report the key molecular components of the effector pathways leading to caspase activation and increased germ cells apoptosis triggered by mildly increased scrotal temperature. Short-term exposure (43 °C for 15 min) of the testis to mild heat results, within 6 h, in stage- and cell-specific activation of germ cell apoptosis in rats. Initiation of apoptosis was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. Such relocation of Bax is further accompanied by sequestration of mitochondria and endoplasmic reticulum (ER) into paranuclear areas, cytosolic translocation of cytochrome c and is associated with activation of the initiator caspase 9 and the executioner caspases 3, 6, and 7, and cleavage of PARP. Furthermore, Bax is co-localized with ER in the susceptible germ cells as assessed by combined two-photon and confocal microscopy and Western blot analyses of fractionated testicular lysates. In additional studies, using gld and lprcg mice, which harbor loss-of-function mutations in Fas-ligand (FasL) and Fas, respectively, we demonstrated that heat-induced germ cell apoptosis is not blocked, thus providing further evidence that the Fas signaling system is dispensable for heat-induced germ cell apoptosis in the testis. Taken together, these results demonstrate that the mitochondria- and possibly also ER-dependent pathways are the key apoptotic pathways for heat induced germ cell death in the testis.  相似文献   

6.
M Zhang  M Jiang  Y Bi  H Zhu  Z Zhou  J Sha 《PloS one》2012,7(7):e41412
Testicular heating suppresses spermatogenesis which is marked by germ cell loss via apoptotic pathways. Recently, it is reported that autophagy also can be induced by heat treatment in somatic cells. In this study, the status of autophagy in germ cells after heat treatment, as well as the partnership between autophagy and apoptosis in these cells was investigated. The results demonstrated that besides initiating apoptotic pathways, heat also induced autophagic pathways in germ cells. Exposure of germ cells to hyperthermia resulted in several specific features of the autophagic process, including autophagosome formation and the conversion of LC3-I to LC3-II. Furthermore, the ubiquitin-like protein conjugation system was implicated as being likely responsible for heat-induced autophagy in germ cells since all genes involving this system were found to be expressed in the testes. In addition, the upstream protein in this system, Atg7 (Autophagy-related gene 7), was found to be expressed in all types of spermatogenic cells, and its expression level was positively correlated with the level of autophagy in germ cells. As a result, Atg7 was selected as the investigative target to further analyze the role of autophagy in heat-induced germ cell death. It was shown that down expression of Atg7 protein resulted in the notable decrease in the level of autophagy in heat-treated germ cells, and this down-regulation of autophagy caused by Atg7 knockdown further reduced the apoptotic rate of germ cells. These results suggest that autophagy plays a positive role in the process of germ cell apoptosis after heat treatment. In conclusion, this study demonstrates that heat triggers autophagy and apoptosis in germ cells. These two mechanisms might act as partners, not antagonist, to induce cell death and lead to eventual destruction of spermatogenesis.  相似文献   

7.
Abstract Recent studies have shown that exposure to warm water can trigger gonadal degeneration and germ cell loss in fish of both sexes, but the mechanism behind this pathology is still not understood. This study was designed to characterize this process histologically and determine whether apoptosis plays any role during high temperature-induced gonadal cell degeneration in subadult pejerrey (Odontesthes bonariensis). For this purpose, fish were reared continuously at constant temperatures of 24 degrees C (control) and 29 degrees C (prolonged heat stress) or exposed for 36 h to 31 degrees C and then returned to 24 degrees C (short heat stress). Gonads were sampled at various times (hours, days, weeks) after the start of the experiment and were analyzed by light microscopy and stereometry for histological integrity/degeneration and germ cell counts, as well as by acridine orange fluorescence microscopy, TUNEL, and caspase activity assay for histochemical and biochemical signs of apoptosis. The results clearly implicate apoptosis in heat-induced somatic and germ cell degeneration in pejerrey and revealed that the dynamics and severity of this process were proportional to the magnitude of the thermal stress. Even a 36-h exposure to 31 degrees C induced significant increases in caspase-3 activity and number of apoptotic cells in both sexes, but males were shown to be more sensitive to heat stress than females.  相似文献   

8.
In some species such as flies, worms, frogs and fish, the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that, although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell-specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells.  相似文献   

9.
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。  相似文献   

10.
This study evaluated the effects of different temperatures on the histological process of sex differentiation in the pejerrey Odontesthes bonariensis, a fish with marked temperature-dependent sex determination (TSD), at feminizing, neutral, and masculinizing temperatures. Fish reared at three temperatures (17 degrees C, 24 degrees C, and 29 degrees C) from hatching were sampled weekly until 11 weeks and their gonads were examined by histology. The percentages of females at 17 degrees C, 24 degrees C, and 29 degrees C were 100%, 73%, and 0%, respectively. Sex differentiation occurred earlier and at a smaller body size at higher temperatures in both sexes. The first signs of ovarian differentiation were observed at 4 and 7 weeks at 24 degrees C and 17 degrees C, respectively, and those of testicular differentiation at 4 and 7 weeks at 29 degrees C and 24 degrees C, respectively. Body or gonadal growth rates before sex differentiation were not proportional to temperature and showed no sexual dimorphism at 24 degrees C, where both sexes were present. Thus, differential growth rate is probably not a factor in TSD or histological sex differentiation in pejerrey. Blood vessels were formed before sex differentiation in both sexes and at all temperatures, and may be important for sex differentiation. No signs of intersexuality were found in any of the groups, and this characterizes pejerrey as the differentiated type of gonochorist even at feminizing and masculinizing temperatures. Ovaries were formed by the same histological processes at feminizing (17 degrees C) and neutral (24 degrees C) temperatures and without any pathological features such as germ cell degeneration. The process of testicular formation was generally similar at 24 degrees C and 29 degrees C, but some fish at 29 degrees C had widespread germ cell degeneration before sex differentiation. This suggests that pathological processes leading to germ cell death, such as heat-induced dysfunction of the supporting somatic cells, could be involved in masculinization of the genetic females at high temperatures.  相似文献   

11.
Starting from the period of testis differentiation, the Sertoli cell plays a pivotal role in the development of a functional testis. FSH is the major mitotic factor for Sertoli cells. Because the supporting capacity of Sertoli cells is relatively fixed for each species, their total number per testis, established just before puberty (approximately 4 months in pigs), dictates the potential for sperm production. In contrast to Sertoli cells that are still undifferentiated, mature Leydig cells are already present at birth in pigs. Spermatogenesis lasts from 30 to 75 days in mammals, and this time period is under the control of the germ cell genotype. In boars, each spermatogenic cycle and the entire spermatogenic process lasts 8.6-9.0 and approximately 40 days, respectively. The sperm transit through the epididymis takes approximately 10 days in pigs and this is within the range cited for most mammals. Germ cell loss occurs normally during spermatogenesis, mainly during the spermatogonial and meiotic phases. In pigs, significant germ cell loss also takes place during spermiogenesis. In mammals in general, including pigs, only 2-3 out of a possible 10 spermatozoa are produced from each differentiated type A1 spermatogonium. The high supporting capacity of Sertoli cells and the short duration of the spermatogenic cycle are the main factors responsible for the comparatively high spermatogenic efficiency of pigs.  相似文献   

12.
Germ cell survival and development critically depend on the cells' contact with Sertoli cells in the vertebrate testis. Fish and amphibians are different from mammals in that they show a cystic type of spermatogenesis in which a single germ cell clone is enclosed by and accompanied through the different stages of spermatogenesis by an accompanying group of Sertoli cells. We show that in maturing and adult testes from African catfish and Nile tilapia, Sertoli cell proliferation occurs primarily during spermatogonial proliferation, allowing the cyst-forming Sertoli cells to provide the increasing space required by the growing germ cell clone. In this regard, coincident with a dramatic increase in cyst volume and number of germ cells per cyst, in Nile tilapia, the number of Sertoli cells per cyst was strikingly increased from primary spermatogonia to spermatocyte cysts. In both African catfish and Nile tilapia, Sertoli cell proliferation is strongly reduced when germ cells have proceeded into meiosis, and stops in postmeiotic cysts. We conclude that Sertoli cell proliferation is the primary factor responsible for the increase in testis size and sperm production observed in teleost fish. In mammals, Sertoli cell proliferation in the adult testis is not observed under natural conditions. However, on the level of the individual spermatogenic cyst--similar to mammals--Sertoli cell proliferation ceases when germ cells have entered meiosis and when tight junctions are established between Sertoli cells. This suggests that fish are valid vertebrate models for studying Sertoli cell physiology.  相似文献   

13.
哺乳动物卵母细胞凋亡的研究进展   总被引:7,自引:0,他引:7  
细胞凋亡是发育过程中的基本生命现象,除各种体细胞凋亡外,生殖细胞的发生过程中也发生细胞凋亡。就雌性生殖系而言,细胞凋亡是其发育过程中的一个重要组成部分。在哺乳动物中,超过99.9%的雌性生殖细胞都会在卵子发生的不同阶段发生凋亡。有三种学说解释这一现象:1)被忽视死亡;2)因缺陷死亡;3)自我牺牲死亡。本文主要综述了哺乳动物卵母细胞凋亡的现象、卵母细胞凋亡学说、线粒体遗传与卵母细胞凋亡的关系以及凋亡的分子机理,同时还探讨了卵母细胞凋亡的生物学意义。  相似文献   

14.
15.
The pairing of sex chromosomes during meiosis in male mammals is associated with ongoing heterochromatinization and X inactivation. This process occurs in a specific area of the nucleus that can be discerned morphologically: the sex vesicle or XY-body. In contrast to X inactivation in the somatic cells of female mammals the reasons for X inactivation in the male germline remain obscure. We have recently demonstrated that the inactive X chromosome in somatic cells of female mammals is marked by a high concentration of histone macroH2A. Here we investigate X inactivation in the meiotic cells of the male germline. We demonstrate here that macroH2A1.2 is present in the nuclei of germ cells starting first with localization that is largely, if not exclusively, to the developing XY-body in early pachytene spermatocytes. Our results suggest that inactivation of sex chromosomes in the male germ cell includes a major alteration of the nucleosomal structure.  相似文献   

16.
General belief in reproductive biology is that in most mammals female germ line stem cells are differentiated to primary oocytes during fetal development and oogenesis starts from a pool of primordial follicles after birth. This idea has been challenged previously by using follicle kinetics studies and demonstration of mitotically active germ cells in the postnatal mouse ovary (Johnson et al., 2004; Kerr et al., 2006; Zhang et al., 2008). However, the existence of a population of self-renewing ovarian germ line stem cells in postnatal mammals is still controversial (Eggan et al., 2006; Telfer et al., 2005; Gosden, 2004). Recently, production of offspring from a germ line stem cell line derived from the neonatal mouse ovary was reported (Zou et al., 2009). This report strongly supports the existence of germ line stem cells and their ability to expand in vitro. Recently, using a transgenic mouse model in which GFP is expressed under a germ cell-specific Oct-4 promoter, we isolated and generated multipotent cell lines from male germ line stem cells (Izadyar et al., 2008). Using the same strategy we isolated and derived cell lines from postnatal mouse ovary. Interestingly, ovarian germ line stem cells expanded in the same culture conditions as the male suggesting that they have similar requirements for their self-renewal. After 1 year of culture and many passages, ovarian germ line stem cells maintained their characteristics and telomerase activity, expressed germ cell and stem cell markers and revealed normal karyotype. As standard protocol for differentiation induction, these cells were aggregated and their ability to form embryoid bodies (EBs) was investigated. EBs generated in the presence of growth factors showed classical morphology and expressed specific markers for three germ layers. However, in the absence of growth promoting factors EBs were smaller and large cells with the morphological and molecular characteristics of oocytes were formed. This study shows the existence of a population of germ line stem cell in postnatal mouse ovary with multipotent characteristics.  相似文献   

17.
冷丽智  林戈  卢光琇 《生物磁学》2011,(18):3569-3572
生殖细胞的发生是发育和遗传的基础。在几乎所有哺乳动物中,原始生殖细胞(primordial germ cell,PGC)均由近端上胚层体细胞在周边细胞特定的信号诱导下特化而成。目前的研究已经发现一些与生殖细胞特化有关的信号分子和关键转录调控元件,以及特化后生殖细胞获得的与体细胞不同的生物特性。生殖细胞的特化是一个结合了体细胞发育程序的抑制、细胞多能性程序的启动和全基因组表观遗传重编程三个方面的动态的复杂过程。多能性干细胞(胚胎干细胞或诱导型多能干细胞)具有发育全能性,能分化为机体任何一种细胞类型,包括生殖细胞。利用多能性干细胞体外分化形成生殖细胞有助于深入系统地研究配子发生的调控机制,为干细胞在不育症治疗方面的应用带来新希望。  相似文献   

18.
Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But “with great power, comes great responsibility”, meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.  相似文献   

19.
Drosophila adult females but not males contain high levels of the steroid hormone ecdysone, however, the roles played by steroid signaling during Drosophila gametogenesis remain poorly understood. Drosophila germ cells in both sexes initially follow a similar pathway. After germline stem cells are established, their daughters form interconnected cysts surrounded by somatic escort (female) or cyst (male) cells and enter meiosis. Subsequently, female cysts acquire a new covering of somatic cells to form follicles. Knocking down expression of the heterodimeric ecdysteroid receptor (EcR/Usp) or the E75 early response gene in escort cells disrupts 16-cell cyst production, meiotic entry and follicle formation. Escort cells lose their squamous morphology and unsheath germ cells. By contrast, disrupting ecdysone signaling in males does not perturb cyst development or ensheathment. Thus, sex-specific steroid signaling is essential for female germ cell development at the time male and female pathways diverge. Our results suggest that steroid signaling plays an important sex-specific role in early germ cell development in Drosophila, a strategy that may be conserved in mammals.  相似文献   

20.
Ercc1 is essential for nucleotide excision repair (NER) but, unlike other NER proteins, Ercc1 and Xpf are also involved in recombination repair pathways. Ercc1 knockout mice have profound cell cycle abnormalities in the liver and die before weaning. Subsequently Xpa and Xpc knockouts have proved to be good models for the human NER deficiency disease, xeroderma pigmentosum, leading to speculation that the recombination, rather than the NER deficit is the key to the Ercc1 knockout phenotype. To investigate the importance of the recombination repair functions of Ercc1 we studied spermatogenesis and oogenesis in Ercc1-deficient mice. Male and female Ercc1-deficient mice were both infertile. Ercc1 was expressed at a high level in the testis and the highest levels of Ercc1 protein occurred in germ cells following meiotic crossing over. However, in Ercc1 null males some germ cell loss occurred prior to meiotic entry and there was no evidence that Ercc1 was essential for meiotic crossing over. An increased level of DNA strand breaks and oxidative DNA damage was found in Ercc1-deficient testis and increased apoptosis was noted in male germ cells. We conclude that the repair functions of Ercc1 are required in both male and female germ cells at all stages of their maturation. The role of endogenous oxidative DNA damage and the reason for the sensitivity of the germ cells to Ercc1 deficiency are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号