首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When methane (CH(4)) and O(2) are present, nitrogen can be removed from wastewater that does not contain other organic carbon sources. In this study, microbial activities during methane-dependent denitrification (MDD) were investigated by adding inhibitors of methane-oxidation and denitrification. Sludge susceptible to MDD showed methane oxidation activity in the presence of CH(4) and O(2), and denitrification activity with methanol and acetate under anoxic conditions. Methyl fluoride (CH(3)F) is known to inhibit methane oxidation. When CH(3)F was present, MDD did not occur, perhaps because methane oxidation was inhibited. Tungstate (WO(4)(2-)), a known inhibitor of nitrate reduction, also lowered denitrification activity in the sludge, and partly inhibited methane oxidation. When WO(4)(2-) was added to the medium, MDD almost ceased, perhaps because of a synergic inhibitory effect on denitrification and methane oxidation. These results show that both methane oxidation and denitrification contribute to MDD.  相似文献   

2.
Movile Cave is an unusual groundwater ecosystem that is supported by in situ chemoautotrophic production. The cave atmosphere contains 1-2% methane (CH4), although much higher concentrations are found in gas bubbles that keep microbial mats afloat on the water surface. As previous analyses of stable carbon isotope ratios have suggested that methane oxidation occurs in this environment, we hypothesized that aerobic methane-oxidizing bacteria (methanotrophs) are active in Movile Cave. To identify the active methanotrophs in the water and mat material from Movile Cave, a microcosm was incubated with a 10%13CH4 headspace in a DNA-based stable isotope probing (DNA-SIP) experiment. Using improved centrifugation conditions, a 13C-labelled DNA fraction was collected and used as a template for polymerase chain reaction amplification. Analysis of genes encoding the small-subunit rRNA and key enzymes in the methane oxidation pathway of methanotrophs identified that strains of Methylomonas, Methylococcus and Methylocystis/Methylosinus had assimilated the 13CH4, and that these methanotrophs contain genes encoding both known types of methane monooxygenase (MMO). Sequences of non-methanotrophic bacteria and an alga provided evidence for turnover of CH4 due to possible cross-feeding on 13C-labelled metabolites or biomass. Our results suggest that aerobic methanotrophs actively convert CH4 into complex organic compounds in Movile Cave and thus help to sustain a diverse community of microorganisms in this closed ecosystem.  相似文献   

3.
Zheng H  Lipscomb JD 《Biochemistry》2006,45(6):1685-1692
The hydroxylase component (MMOH) of the soluble form of methane monooxygenase (sMMO) isolated from Methylosinus trichosporium OB3b catalyzes both the O2 activation and the CH4 oxidation reactions at the oxygen-bridged dinuclear iron cluster present in its buried active site. During the reaction cycle, the diiron cluster forms a bis-mu-oxo-(Fe(IV))2 intermediate termed compound Q (Q) that reacts directly with methane. Many adventitious substrates also react with Q, most at a relatively slow rate. We have proposed that Q reacts preferentially with CH4 because the sMMO regulatory component MMOB induces a size selective pore into the MMOH active site as the two components form a complex. Support for this proposal has come through the observation of a nonlinear Arrhenius plot for the CH4 oxidation, presumably due to a shift in rate-limiting step from substrate binding at low temperature to C-H bond cleavage at high temperature. Reactions of all substrates other than CH4 fail to exhibit a break in the Arrhenius plot because binding is always rate limiting in the temperature range explored. Here we show that it is possible to induce a break in the Arrhenius plot for the ethane reaction with Q by using an MMOB mutant termed DBL2 (S109A/T111A) in which residues at the MMOH-MMOB interface are reduced in size. We hypothesize that this increases the ethane binding rate and shifts the Arrhenius breakpoint into the observable temperature range. As a result of this shift, the kinetic and activation parameters of the C-H bond breaking reaction for both methane and ethane can be observed using the DBL2 mutant. A 2H-KIE is observed for both substrate oxidation reactions when using DBL2, whereas only CH4 oxidation exhibits an effect when using wild type MMOB, consistent with the C-H bond cleaving reaction becoming at least partially rate limiting for ethane. Analysis of the temperature dependence of the 2H-KIE for ethane and methane for reactions using both mutant and wild type forms of MMOB suggests that quantum tunneling plays a significant role in methane oxidation but not ethane oxidation.  相似文献   

4.
The activity of methanogenic and methanotrophic bacteria was evaluated in bottom sediments of Lake Baikal. Methane concentration in Baikal bottom sediments varied from 0.0053 to 81.7 ml/dm3. Bacterial methane was produced at rates of 0.0004-534.7 microliters CH4/(dm3 day) and oxidized at rates of 0.005-1180 microliters CH4/(dm3 day). Peak methane production and oxidation were observed in Frolikha Bay near a methane vent. Methane was emitted into water at rates of 49.2-4340 microliters CH4/(m2 day). Rates of bacterial methane oxidation in near-bottom water layers ranged from 0.002 to 1.78 microliters/(1 day). Methanogens and methanotrophs were found to play an important role in the carbon cycle through all layers of sediments, particularly in the areas of methane vent and gas-hydrate occurrence.  相似文献   

5.
The activity and distribution of methanotrophs in soil depend on the availability of CH4 and O2. Therefore, we investigated the activity and structure of the methanotrophic community in rice field soil under four factorial combinations of high and low CH4 and O2 concentrations. The methanotrophic population structure was resolved by denaturant gradient gel electrophoresis (DGGE) with different PCR primer sets targeting the 16S rRNA gene, and two functional genes coding for key enzymes in methanotrophs, i.e. the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Changes in the biomass of type I and II methanotrophic bacteria in the rice soil were determined by analysis of phospholipid-ester-linked fatty acid (PLFA) biomarkers. The relative contribution of type I and II methanotrophs to the measured methane oxidation activity was determined by labelling of soil samples with 14CH4 followed by analysis of [14C]-PLFAs. CH4 oxidation was repressed by high O2 (20.5%), and enhanced by low O2 (1%). Depending on the CH4 and O2 mixing ratios, different methanotrophic communities developed with a higher diversity at low than at high CH4 concentration as revealed by PCR-DGGE. However, a prevalence of type I or II populations was not detected. The [14C]-PLFA fingerprints, on the other hand, revealed that CH4 oxidation activity was dominated by type I methanotrophs in incubations with low CH4 mixing ratios (1000 p.p.m.v.) and during initiation of CH4 consumption regardless of O2 or CH4 mixing ratio. At high methane mixing ratios (10 000 p.p.m.v.), type I and II methanotrophs contributed equally to the measured CH4 metabolism. Collectively, type I methanotrophs responded fast and with pronounced shifts in population structure and dominated the activity under all four gas mixtures. Type II methanotrophs, on the other hand, although apparently more abundant, always present and showing a largely stable population structure, became active later and contributed to CH4 oxidation activity mainly under high CH4 mixing ratios.  相似文献   

6.
Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two groups of organisms to the metabolism of CO, CH4, and NH4+ in various environments are not known. In the ammonia oxidizers, ammonia monooxygenase, the enzyme responsible for the conversion of NH4+ to NH2OH, also catalyzes the oxidation of CH4 to CH3OH. Ammonia monooxygenase also mediates the transformation of CH3OH to CO2 and cell carbon, but the pathway by which this is done is not known. At least one species of ammonia oxidizer, Nitrosococcus oceanus, exhibits a Km for CH4 oxidation similar to that of methanotrophs. However, the highest rate of CH4 oxidation recorded in an ammonia oxidizer is still five times lower than rates in methanotrophs, and ammonia oxidizers are apparently unable to grow on CH4. Methanotrophs oxidize NH4+ to NH2OH via methane monooxygenase and NH4+ to NH2OH via methane monooxygenase and NH2OH to NO2- via an NH2OH oxidase which may resemble the enzyme found in ammonia oxidizers. Maximum rates of NH4+ oxidation are considerably lower than in ammonia oxidizers, and the affinity for NH4+ is generally lower than in ammonia oxidizers. NH4+ does not apparently support growth in methanotrophs. Both ammonia monooxygenase and methane monooxygenase oxidize CO to CO2, but CO cannot support growth in either ammonia oxidizers or methanotrophs. These organisms have affinities for CO which are comparable to those for their growth substrates and often higher than those in carboxydobacteria. The methane monooxygenases of methanotrophs exist in two forms: a soluble form and a particulate form. The soluble form is well characterized and appears unrelated to the particulate. Ammonia monooxygenase and the particulate methane monooxygenase share a number of similarities. Both enzymes contain copper and are membrane bound. They oxidize a variety of inorganic and organic compounds, and their inhibitor profiles are similar. Inhibitors thought to be specific to ammonia oxidizers have been used in environmental studies of nitrification. However, almost all of the numerous compounds found to inhibit ammonia oxidizers also inhibit methanotrophs, and most of the inhibitors act upon the monooxygenases. Many probably exert their effect by chelating copper, which is essential to the proper functioning of some monooxygenases. The lack of inhibitors specific for one or the other of the two groups of bacteria hampers the determination of their relative roles in nature.  相似文献   

7.
Biochemistry of methanogenesis.   总被引:9,自引:0,他引:9  
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

8.
The inhibition of methane oxidation by cell suspensions of Methylococcus capsulatus (Bath) exposed to hydrochlorofluorocarbon 21 (HCFC-21; difluorochloromethane [CHF(inf2)Cl]), HCFC-22 (fluorodichloromethane [CHFCl(inf2)]), and various fluorinated methanes was investigated. HCFC-21 inhibited methane oxidation to a greater extent than HCFC-22, for both the particulate and soluble methane monooxygenases. Among the fluorinated methanes, both methyl fluoride (CH(inf3)F) and difluoromethane (CH(inf2)F(inf2)) were inhibitory while fluoroform (CHF(inf3)) and carbon tetrafluoride (CF(inf4)) were not. The inhibition of methane oxidation by HCFC-21 and HCFC-22 was irreversible, while that by methyl fluoride was reversible. The HCFCs also proved inhibitory to methanol dehydrogenase, which suggests that they disrupt other aspects of C(inf1) catabolism in addition to methane monooxygenase activity.  相似文献   

9.
In laboratory incubation experiments, application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2',6'-diethyl acetanilide) to three tropical rice soils, widely differing in their physicochemical characteristics, under flooded condition inhibited methane (CH4) production. The inhibitory effect was concentration dependent and most remarkable in the alluvial soil. Thus, following application of butachlor at 5, 10, 50 and 100 microg g(-1) soil, respectively, cumulative CH4 production in the alluvial soil was inhibited by 15%, 31%, 91% and 98% over unamended control. Since CH4 production was less pronounced in the sandy loam and acid sulfate soil, the impact of amendment with butchalor, albeit inhibitory, was less extensive than the alluvial soil. Inhibition of CH4 production in butachlor-amended alluvial soil was related to the prevention in the drop in redox potential as well as low methanogenic bacterial population especially at high concentrations of butachlor. CH4 oxidation was also inhibited in butachlor-amended alluvial soil with the inhibitory effect being more prevalent under flooded condition. Inhibition in CH4 oxidation was related to a reduction in the population of soluble methane monooxygenase producing methanotrophs. Results demonstrate that butachlor, a commonly used herbicide in rice cultivation, even at very low concentrations can affect CH4 production and its oxidation, thereby influencing the biogeochemical cycle of CH4 in flooded rice soils.  相似文献   

10.
11.
Miyajima  Toshihiro  Wada  Eitaro 《Hydrobiologia》1998,382(1-3):113-118
The oxidative consumption of methane (CH4) generally proceeds with a significant isotope fractionation, and isotopic variations in CH4 observed in sulfate-containing anaerobic sediments have often been interpreted as an indicator of anaerobic methane oxidation at the expense of sulfate. However, we found variations in δ13C value of CH4 depending on sulfate availability in tropical swamp sediments, in which no anaerobic CH4 oxidation was detected. In one sediment, the range of δ13C variation due to sulfate was as large as 20‰. The variations in δ13C of decomposed organic matter and CO2 failed to explain the variation in CH4 δ13C. We postulate a syntrophic linkage between sulfate-reducing and methanogenic bacteria via acetate as a mechanism of the observed δ'13C variation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Aerobic methane (CH(4) ) oxidation reduces the emission of CH(4) from mires and is regulated by various environmental factors. Organic acids and alcohols are intermediates of the anaerobic degradation of organic matter or are released by plant roots. Methanotrophs isolated from mires utilize these compounds preferentially to CH(4) . Thus, the effect of organic acids and ethanol on CH(4) oxidation by methanotrophs of a mire was evaluated. Slurries of mire soil oxidized supplemental CH(4) down to subatmospheric concentrations. The dominant pmoA and mmoX genotypes were affiliated with sequences from Methylocystis species capable of utilization of acetate and atmospheric CH(4) . Soil slurries supplemented with acetate, propionate or ethanol had reduced CH(4) oxidation rates compared with unsupplemented or glucose-supplemented controls. Expression of Methylocystis-affiliated pmoA decreased when CH(4) consumption decreased in response to acetate and was enhanced after acetate was consumed, at which time the consumption of CH(4) reached control levels. The inhibition of methanotroph activity might have been due to either toxicity of organic compounds or their preferred utilization. CH(4) oxidation was reduced at 5 and 0.5 mM of supplemental organic compounds. Acetate concentrations may exceed 3 mM in the investigated mire. Thus, the oxidation of CH(4) might decrease in microzones where organic acids occur.  相似文献   

13.
Dziuban AN 《Mikrobiologiia》2002,71(1):111-118
The intensity of the microbiological processes of methane formation (MF) and methane oxidation (MO) was determined in the sediments and water of different types of Baltic lakes. The emission of methane from the lake sediments and methane distribution in the water column of the lakes were studied as functions of the lake productivity and hydrologic conditions. During summers, the intensity of MF in the lake sediments and waters varied from 0.001 to 106 ml CH4/(dm3 day) and from 0 to 3.2 ml CH4/(1 day), respectively, and the intensity of MO in the sediments and water varied from 0 to 11.2 ml CH4/(dm3 day) and from 0 to 1.1 ml CH4/(1 day), respectively. The total methane production (MP) in the lakes varied from 15 to 5000 ml CH4/(m2 day). In anoxic waters, the MP comprised 9-18% of the total PM in the lakes. The consumption of organic carbon for methanogenesis varied from 0.03 to 9.7 g/(m2 day). The role of the methane cycle in the degradation of organic matter in the lakes increased with their productivity.  相似文献   

14.
R. Roy  R. Knowles 《Applied microbiology》1995,61(12):4278-4283
Addition of nitrapyrin, allylthiourea, C(inf2)H(inf2), and CH(inf3)F to freshwater sediment slurries inhibited CH(inf4) oxidation and nitrification to similar extents. Dicyandiamide and allylsulfide were less inhibitory for CH(inf4) oxidation than for nitrification. Allylsulfide was the most potent inhibitor of nitrification, and the estimated 50% inhibitory concentrations for this process and CH(inf4) oxidation were 0.2 and 121 (mu)M, respectively. At a concentration of 2 (mu)M allylsulfide, growth and CH(inf4) oxidation activity of Methylosinus trichosporium OB3b were not inhibited. Allylsulfide at 200 (mu)M inhibited the growth of M. trichosporium by approximately 50% but did not inhibit CH(inf4) oxidation activity. Nitrite production by cells of M. trichosporium was not significantly affected by allylsulfide, except at a concentration of 2 mM, when growth and CH(inf4) oxidation were also inhibited by about 50%. Methane monooxygenase activity present in soluble fractions of M. trichosporium was not inhibited significantly by allylsulfide at either 200 (mu)M or 2 mM. These results suggest that the partial inhibition of CH(inf4) oxidation in sediment slurries by high allylsulfide concentrations may be caused by an inhibition of the growth of methanotrophs rather than an inhibition of methane monooxygenase activity specifically. We conclude that allylsulfide is a promising tool for the study of interactions of methanotrophs and nitrifiers in N cycling and CH(inf4) turnover in natural systems.  相似文献   

15.
The metabolism of atmospheric methane in a forest soil was studied by radiotracer techniques. Maximum (sup14)CH(inf4) oxidation (163.5 pmol of C cm(sup-3) h(sup-1)) and (sup14)C assimilation (50.3 pmol of C cm(sup-3) h(sup-1)) occurred at the A(inf2) horizon located 15 to 18 cm below the soil surface. At this depth, 31 to 43% of the atmospheric methane oxidized was assimilated into microbial biomass; the remaining methane was recovered as (sup14)CO(inf2). Methane-derived carbon was incorporated into all major cell macromolecules by the soil microorganisms (50% as proteins, 19% as nucleic acids and polysaccharides, and 5% as lipids). The percentage of methane assimilated (carbon conversion efficiency) remained constant at temperatures between 5 and 20(deg)C, followed by a decrease at 30(deg)C. The carbon conversion efficiency did not increase at methane concentrations between 1.7 and 1,000 ppm. In contrast, the overall methane oxidation activity increased at elevated methane concentrations, with an apparent K(infm) of 21 ppm (31 nM CH(inf4)) and a V(infmax) of 188 pmol of CH(inf4) cm(sup-3) h(sup-1). Methane oxidizers from soil depths with maximum methanotrophic activity respired approximately 1 to 3% of the assimilated methane-derived carbon per day. This apparent endogenous respiration did not change significantly in the absence of methane. Similarly, the potential for oxidation of atmospheric methane was relatively insensitive to methane starvation. Soil samples from depths above and below the zone with maximum atmospheric methane oxidation activity showed a dramatic increase in the turnover of the methane assimilated (>20 times increase). Physical disturbance such as sieving or mixing of soil samples decreased methane oxidation and assimilation by 50 to 58% but did not alter the carbon conversion efficiency. Ammonia addition (0.1 or 1.0 (mu)mol g [fresh weight](sup-1)) decreased both methane oxidation and carbon conversion efficiency. This resulted in a dramatic decrease in methane assimilation (85 to 99%). In addition, ammonia-treated soil showed up to 10 times greater turnover of the assimilated methane-derived carbon (relative to untreated soil). The results suggest a potential for microbial growth on atmospheric methane. However, growth was regulated strongly by soil parameters other than the methane concentration. The pattern observed for metabolism of atmospheric methane in soils was not consistent with the physiology of known methanotrophic bacteria.  相似文献   

16.
Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.  相似文献   

17.
Methane hydroxylase (MH) from the obligate methane assimilating culture of Methylococcus thermophilus catalyses oxygenation of both CH4+ and NH4+; therefore, we studied the specificity of enzyme systems catalysing the subsequent oxidation of compounds produced upon the oxygenation of these substrates (CH3OH and NH2OH). CH3OH and NH2OH were shown to be oxidized by different enzymes, viz. methanol dehydrogenase (MD) and hydroxylamine oxidase (HO), respectively. Similar to MH, MD is characterized by the absence of strict substrate specificity, and catalyses oxidation of primary alcohols other than methanol, rather than hydroxylamine. HO catalyses oxidation of hydroxylamine rather than methanol and possesses the activity of hydroxylamine:cytochrome c oxidoreductase. The constitutive character of HO from the methane assimilating bacteria and the substrate specificity of the enzyme suggest that a lithotrophic pathway for producing energy operates in these bacteria. The HO of Methylococcus thermophilus is similar in certain properties to the HO of the nitrifying bacterium Nitrosomonas europaea.  相似文献   

18.
Inputs of CH(4) from sediments, including methane seeps on the continental margin and methane-rich mud volcanoes on the abyssal plain, make the Black Sea the world's largest surface water reservoir of dissolved methane and drive a high rate of aerobic and anaerobic oxidation of methane in the water column. Here we present the first combined organic geochemical and molecular ecology data on a water column profile of the western Black Sea. We show that aerobic methanotrophs type I are responsible for methane oxidation in the oxic water column and ANME-1- and ANME-2-related organisms for anaerobic methane oxidation. The occurrence of methanotrophs type I cells in the anoxic zone suggests that inactive cells settle to deeper waters. Molecular and biomarker results suggest that a clear distinction between the occurrence of ANME-1- and ANME-2-related lineages exists, i.e. ANME-1-related organisms are responsible for anaerobic methane oxidation below 600 m water depth, whereas ANME-2-related organisms are responsible for this process in the anoxic water column above approximately 600 m water depth.  相似文献   

19.
The deep anoxic shelf of the northwestern Black Sea has numerous gas seeps, which are populated by methanotrophic microbial mats in and above the seafloor. Above the seafloor, the mats can form tall reef-like structures composed of porous carbonate and microbial biomass. Here, we investigated the spatial patterns of CH(4) and CO(2) assimilation in relation to the distribution of ANME groups and their associated bacteria in mat samples obtained from the surface of a large reef structure. A combination of different methods, including radiotracer incubation, beta microimaging, secondary ion mass spectrometry, and catalyzed reporter deposition fluorescence in situ hybridization, was applied to sections of mat obtained from the large reef structure to locate hot spots of methanotrophy and to identify the responsible microbial consortia. In addition, CO(2) reduction to methane was investigated in the presence or absence of methane, sulfate, and hydrogen. The mat had an average delta(13)C carbon isotopic signature of -67.1 per thousand, indicating that methane was the main carbon source. Regions dominated by ANME-1 had isotope signatures that were significantly heavier (-66.4 per thousand +/- 3.9 per thousand [mean +/- standard deviation; n = 7]) than those of the more central regions dominated by ANME-2 (-72.9 per thousand +/- 2.2 per thousand; n = 7). Incorporation of (14)C from radiolabeled CH(4) or CO(2) revealed one hot spot for methanotrophy and CO(2) fixation close to the surface of the mat and a low assimilation efficiency (1 to 2% of methane oxidized). Replicate incubations of the mat with (14)CH(4) or (14)CO(2) revealed that there was interconversion of CH(4) and CO(2.) The level of CO(2) reduction was about 10% of the level of anaerobic oxidation of methane. However, since considerable methane formation was observed only in the presence of methane and sulfate, the process appeared to be a rereaction of anaerobic oxidation of methane rather than net methanogenesis.  相似文献   

20.
Methanotrophic bacteria in an organic soil were enriched on gaseous mixing ratios of <275 parts per million of volume (ppmv) of methane (CH4). After 4 years of growth and periodic dilution (>10(20) times the initial soil inoculum), a mixed culture was obtained which displayed an apparent half-saturation constant [Km(app)] for CH4 of 56 to 186 nM (40 to 132 ppmv). This value was the same as that measured in the soil itself and about 1 order of magnitude lower than reported values for pure cultures of methane oxidizers. However, the Km(app) increased when the culture was transferred to higher mixing ratios of CH4 (1,000 ppmv, or 1%). Denaturing gradient gel electrophoresis of the enrichment grown on <275 ppmv of CH4 revealed a single gene product of pmoA, which codes for a subunit of particulate methane monooxygenase. This suggested that only one methanotroph species was present. This organism was isolated from a sample of the enrichment culture grown on 1% CH4 and phylogenetically positioned based on its 16S rRNA, pmoA, and mxaF gene sequences as a type II strain of the Methylocystis/Methylosinus group. A coculture of this strain with a Variovorax sp., when grown on <275 ppmv of CH4, had a Km(app) (129 to 188 nM) similar to that of the initial enrichment culture. The data suggest that the affinity of methanotrophic bacteria for CH4 varies with growth conditions and that the oxidation of atmospheric CH4 observed in this soil is carried out by type II methanotrophic bacteria which are similar to characterized species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号