首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A perfused rat liver was used to study the effects of 5-diazo-4-oxo-L-norvaline on lysosomal glycoprotein catabolism. Addition of this compound (1.0 mM) to the perfusate reduced activity of beta-aspartyl-N-acetylglucosylamine amidohydrolase by 99% in 1 h. Treated livers were unable to completely degrade endocytosed N-acetyl[14C]glucosamine-labeled asialo-alpha 1-acid glycoprotein as evidenced by a 50% reduction in radiolabeled serum glycoprotein secretion compared to controls. This decreased degradation was matched by a lysosomal accumulation of glycopeptides with the structure: GlcNAc beta(1-4)GlcNAc-Asn. The result suggested the presence of an unrecognized glycosidase in rat liver lysosomes, since this remnant was extended by one more GlcNAc residue than would have been expected after specific inactivation of the amidohydrolase. Such a novel enzyme would therefore catalyze cleavage of the N-acetylglucosamine residue at the reducing end of alpha 1-acid glycoprotein oligosaccharides only following removal of the linking Asn. The activity was then detected in lysosomal extracts by using intact asialo-biantennary oligosaccharides labeled with [3H] galactose or N-acetyl[14C]glucosamine residues as a substrate. To prevent simultaneous digestion of the material from its nonreducing end, beta-D-galactosidase in the enzyme extract was first inactivated with the irreversible active site-directed inhibitor, beta-D-galactopyranosylmethyl-p-nitrophenyltriazene. The observed di-N-acetylchitobiose cleaving activity worked optimally at pH 3.4 and was uniquely associated with the lysosomal fraction of the liver homogenate. The enzyme also cleaved triantennary chains and di-N-acetylchitobiose, but failed to hydrolyze substrates that had been reduced with NaBH4. The new glycosidase was well separated from N-acetyl-beta-D-glucosaminidase (assayed with p-nitrophenyl-beta-D-glucosaminide) by gel filtration chromatography and had an apparent molecular weight of 37,000. A similar enzyme that hydrolyzes di-N-acetylchitobiose had previously been found in extracts of human liver (Stirling, J. L. (1974) FEBS Lett. 39, 171-175).  相似文献   

2.
Indole-3-acetyl-L-aspartic acid (IAA-Asp) is a natural product in many plant species and plays many important roles in auxin metabolism and plant physiology. IAA-Asp hydrolysis activity is, therefore, believed to affect plant physiology through changes in IAA metabolism in plants. We applied a newly discovered technique, arginine-rich intracellular delivery (AID), to deliver a bacterial IAA-Asp hydrolase into cells of mung bean (Vigna radiata) seeds and measured its effects on mung bean seed germination. IAA-Asp hydrolase inhibited seed germination about 12 h after the enzyme was delivered into cells of mung bean seeds both covalently and noncovalently. Mung bean seed germination was delayed by 36 h when the enzyme protein was noncovalently attached to the AID peptide and longer than 60 h when the enzyme protein was covalently attached to the AID peptide. Root elongation of mung bean plants was inhibited as much as 90% or 80%, respectively, when the IAA-Asp hydrolase was delivered with the AID peptide by covalent or noncovalent association. Further thin-layer chromatography analysis of plant extracts indicated that the levels of IAA increased about 12 h after treatment and reached their peak at 24 h. This result suggests that IAA-Asp hydrolase may increase IAA levels and inhibit seed germination of mung bean plants and that the AID peptide is a new, rapid, and efficient experimental tool to study the in vivo activity of enzymes of interest in plant cells.  相似文献   

3.
This study describes the first identification of plant enzyme activity catalyzing the conjugation of indole-3-acetic acid to amino acids. Enzymatic synthesis of indole-3-acetylaspartate (IAA-Asp) by a crude enzyme preparation from immature seeds of pea (Pisum sativum) was observed. The reaction yielded a product with the same Rf as IAA-Asp standard after thin layer chromatography. The identity of IAA-Asp was verified by HPLC analysis. IAA-Asp formation was dependent on ATP and Mg2+, and was linear during a 60 min period. The enzyme preparation obtained after poly(ethylene glycol) 6000 fractionation showed optimum activity at pH 8.0, and the temperature optimum for IAA-Asp synthesis was 30 degrees C.  相似文献   

4.
In this study, seed germination percentages, effects on phases of mitosis and α-amylase enzyme activity of lentil seeds treated with four different concentrations (0.25, 0.5, 1 and 1.5%) of Fusilade (Fluazifop-p-butyl) were determined. Median EC (effective concentration) values were calculated according to seed germination percentages after treatment for 72 h. Germination percentages of primary lentil roots decreased with increasing Fusilade concentrations. Cytological observations showed that the mitotic frequency in root meristematic cells were decreased parallel to the increase in concentrations and all Fusilade concentrations applied decreased the activity of α-amylase enzyme in lentil seeds. The obtained results indicate that the herbicide Fusilade had the ability to cause reduction in seed germination, mitotic frequency and also α-amylase activity of lentil seeds.  相似文献   

5.
The total activity of aldolase (EC 4.1.2.13) and the activities of cytosol and chloroplast aldolase were determined in seeds, cotyledons, primary leaves and secondary leaves of spinach (Spinacia oleracea L., cv. Monopa) during germination. Total aldolase activity in cotyledons increased from low levels to a low maximum in the dark after one week and to a high maximum in white light after three to four weeks and declined thereafter. The activity in primary and secondary leaves started to rise strongly from the 18th and 26th days, respectively, up to the 42nd day of germination. The levels of aldolase activity paralleled the development of leaf area, chlorophyll content and protein content per leaf except that the leaf area of cotyledons continued to increase steadily up to the 42nd day after the maximum of aldolase activity was reached. Resolution of cytosol- and chloroplast-specific isoenzymes by chromatography on diethylaminoethylcellulose indicated that in the light the cytosol enzyme represented approx. 8% of the total activity in cotyledons, primary and secondary leaves throughout germination, and the chloroplast enzyme represented the remaining 92%. Only in cotyledons of dark-grown seedlings was the cytosol aldolase between 25 and 50% of the total activity. Seeds contained almost exclusively a cytosol aldolase. In cotyledons the increase of total activity in the light was specifically the consequence of an increase in chloroplast aldolase while the cytosol aldolase was little affected by light. The light effect was mediated by phytochrome as demonstrated by classical induction and reversion experiments with red and far-red light and by continuous far-red light treatment.Abbreviation DEAE-cellulose diethylaminoethylcellulose  相似文献   

6.
Qualitative and quantitative differences in cytokinin levels of gram seeds were observed during germination of control and 6-benzylaminopurine (BAP; 4.44 x 10t-5 M) treated seeds. Zeatin riboside (ZR), zeatin (Z), dihydrozeatin (DHZ), isopentenyladenosine (iPA) and isopentenyladenine (iP) were determined using high pressure liquid chromatography. In the control seeds the ZR content increased markedly only after 24 h of germination. In BAP treated seeds, the increase in ZR content was stronger than in control seeds and it persisted during further germination. Z content increased during germination in both control and treated seeds. After 48 h of germination iP appeared in control and especially in treated seeds. Acknowledgements: The senior author is thankful to University Grants Commision, New Delhi for award of Research Associateship.  相似文献   

7.
In wheat seed the scutellum plays an important role in the hydrolysisof stored substrate during germination. This layer is activatedfirst, whilst the aleurone becomes activated later. A good correlationexists between the initiation of visible germination and theappearance of enzyme activity in the scutellum. Enzyme activityin the aleurone becomes apparent only when the germinating seedlingreaches the rapid growth phase. Electron microscopic observationsshow that during the later stages of germination the scutellarcells develop finger like projections. These may serve to absorbendospermic reserves hydrolysed by aleurone amylase. The scutellumof aged non-germinating seeds showed no amylase activity andno finger like projections were produced even after prolongedimbibition.Copyright 1993, 1999 Academic Press Wheat (Triticum aestivum L.), deteriorated, germination, scutellum, scanning electron microscopy, aleurone  相似文献   

8.
Chitobiase, the lysosomal glycosidase responsible for splitting the GlcNAc beta-D-(1-4)GlcNAc moiety in Asn-linked glycoproteins, was purified over 600-fold from frozen rat livers utilizing an assay with di-N-acetylchitobiose as the substrate. The final preparation showed a major polypeptide of Mr 43,000 (sodium dodecylsulfate-polyacrylamide gel electrophoresis) that was determined to be the chitobiase by an immunological method. The purified chitobiase also hydrolyzed tri- and tetrasaccharides of chitin, which like di-N-acetylchitobiose were not substrates if first reduced by NaBH4. The initial products formed during hydrolysis of the tetrasaccharide were trisaccharide and GlcNAc. These results imply that chitobiase is a "reducing-end exohexosaminidase" which cleaves single GlcNAc units only from the reducing end of oligosaccharides. Fucose, typically found linked to the reducing-end GlcNAc in complex oligosaccharide chains, was found to block this reaction. Additional substrates that were hydrolyzed included GlcNAc beta-D-(1-4)MurNAc, the repeating structure from bacterial cell wall peptidoglycan, and the Man beta-D-(1-4)GlcNAc reducing-end component of glycoproteins. Km and Vm for hydrolysis of these substrates were of similar magnitude as for di-N-acetylchitobiose (6.3 mM and 15 mumol/min/mg protein, respectively). Liver tissues from nin mammalian species were surveyed for the presence of chitobiase activity. The activity was found in rat, mouse, rabbit, and guinea pig liver (Stirling [(1974) FEBS Lett. 39, 171-175] previously observed the enzyme in human liver), but not in dog, sheep, pig, cat, and cow liver. The presence or absence of chitobiase so far observed was found to exactly correlate with the type of oligosaccharide fragments found to accumulate in animals containing genetic or inhibitor-induced lysosomal storage pathologies. The presence of the chitobiase corresponds to the occurrence of one GlcNAc unit at the reducing end of stored oligosaccharides, while the absence of this glycosidase yields fragments with an intact GlcNAc beta-D-(1-4)GlcNAc moiety. These results verify our previous proposal that lysosomal disassembly of glycoproteins to free amino acids and sugars is an ordered, bidirectional pathway in which chitobiase (when present) catalyzes the last step during digestion of the protein-oligosaccharide linkage region.  相似文献   

9.
Oat phytoalexins, avenanthramides, occur as constitutive components in seeds. The amounts of each avenanthramide were analyzed. The composition of avenanthramides in dry seeds was different from that in elicitor-treated leaves. In seeds, avenanthramide C was most abundant with an amount two times larger than that of avenanthramide A or B. On the other hand, avenanthramide A was the major component in elicitor-treated leaves. The total amount of avenanthramides in seeds increased 2.5 times during imbibition for 48 h although the composition did not change. The hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyltransferase (HHT, EC 2.3.1.-) activity, which is responsible for the final condensation step in the avenanthramide biosynthesis, was detected in dry seeds. The activity was localized in endosperm and scutellum, and slightly increased during 48-h imbibition. The enzyme was partially purified by anion exchange chromatography from both dry seeds and elicitor-treated leaves The activity was separated into two peaks by chromatography, indicating that HHT consists of at least two isoforms. The substrate specificities of HHT isoforms from seeds were different from each other.  相似文献   

10.
Development of peptide-transport activity in the scutella of isolated barley (Hordeum vulgare l. cv. Maris Otter, Winter) embryos is shown to increase rapidly after about 15 h of imbibition, with the bulk of the transport activity being expressed by 24 h. This development is prevented by treatment of 15 h embryos with cycloheximide. Protein synthesis is found to increase in a closely related manner and also to be abolished by cycloheximide. Measurement of the incorporation of bound [35S]methionine by 15 to 21-h embryos indicates that de-novo protein synthesis during this period is greater in the scutellum than in the embryonic axis. Previous studies have shown that the peptide-transport system possesses essential dithiol groups, probably located at the substrate-binding site (Walker-Smith and Payne 1983 b, 1984b). Treatment of 15-h embryos with the non-penetrant thiol reagent p-chloromercuribenzene sulphonic acid did not affect development of peptide-transport activity during the following 6 h, whereas with 3-d embryos identical treatment inhibited uptake almost completely during a subsequent 6-h period. Radioautography revealed that amongst the proteins synthesised during this early phase of germination and labelled in vitro with [35S]methionine some are found within the epithelial plasmalemmae of the scutellum, which is the location of the peptide-transport carrier identified previously by externally labelling with a radioactive thiol reagent. The results provide evidence that protein(s) of the peptide-transport system are synthesised and inserted into the scutellum during early germination, allowing the system to play a major role in the nitrogen nutrition of the embryo.Abbreviations Gly Glycine - Phe phenylalanine  相似文献   

11.
The chitin synthetase of Phycomyces blakesleeanus mycelium is a particulate enzyme sedimenting mostly at 1000xg. The activity in crude extracts or cellular fractions can be increased more than tenfold by mild trypsin treatment. Plotting the reaction velocity versus UDP-N-acetylglucosamine concentration yields a sigmoidal curve. N-acetylglucosamine, which greatly stimulates the enzyme, changes the kinetics to an almost normal hyperbolic relationship.The enzyme is nearly absent in dormant spores and is synthesized de novo in germinating spores (from 4 h germination on). Trypsin treatment of extracts from germinating spores to assay the synthesis of the proenzyme did not reveal an earlier synthesis of the zymogen, which therefore might have some activity of its own.Abbreviations Used UDP-GlcNAc Uridinediphosphate-N-acetylglucosamine - GlcNAc N-acetylglucosamine - Chitin synthetase UDP-2-acetylamino-deoxyglucosyltransferase (EC 2.4.1.16)  相似文献   

12.
M. Perl 《Planta》1978,139(3):239-243
Cotton (Gossypium hirsutum) seeds and Sorghum vulgare caryopses are able to incorporate CO2 through a PEP-carboxylating enzyme (EC 4.1.1.38). The enzyme activity is optimal at pH 8.2 and is unaffected by ATP, GDP or acetyl CoA. The partially purified cotton enzyme is stimulated by inorganic phosphate with an apparent Km of 0.3 mM. The enzymes from both cultivars are inhibited by pyrophosphate, malate, and aspartate but not by succinate. Kinetic studies for Sorghum and cotton seed enzymes show apparent Km values for carbonate of 5 mM and 1.2 mM and for PEP of 36 M and 5 mM, respectively. The Vmax values are 90 and 3.3 nmol min-1 mg protein-1, respectively.A two-fold increase in the enzyme activity from cotton seeds occurs after 2 h under laboratory germination conditions after which the activity drops sharply to 1/3 of the original activity after 5 h imbibition. No such change was observed in Sorghum caryopses enzyme. A correlation between PEP-carboxylase activity and seed vigor in both cultivars was demonstrated.Abbreviations GOT glutamicoxaloacetic-transaminase - MDH malic dehydrogenase-NADH2 - RH relative humidity  相似文献   

13.
An alpha-mannosidase was purified from the magnum section of Japanese quail oviduct by ammonium sulfate precipitation, DEAE-Sephacel chromatography, Sephacryl S-300 chromatography, mannan-Sepharose 4B chromatography, and hydroxyapatite chromatography. The purified alpha-mannosidase (referred to as neutral alpha-mannosidase) showed a single band on polyacrylamide gel with or without sodium dodecyl sulfate. Its molecular weight was found to be 330,000 by gel chromatography. Neutral alpha-mannosidase hydrolyzed p-nitrophenyl alpha-D-mannopyranoside and the pyridylamino derivative of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (Km value was 3 mM). Mannosyl alpha 1-2 linkages in the pyridylamino derivative of Man alpha 1-2 Man alpha 1-6(Man alpha 1-2Man alpha 1-3)Man alpha 1-6(Man alpha 1-2Man alpha 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc were hardly hydrolyzed. Its optimum pH was found to be 7.0. The activity of the enzyme was activated by CO2+, and was potently inhibited by Cu2+, Hg2+, swainsonine, and 1-deoxymannojirimycin.  相似文献   

14.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

15.
The influence of seed coat modification and light quality onwater uptake and distribution in caryopses of dormant and non-dormantlines of wild oat (Avena fatua L.) was determined using NMRmicroimaging. Non-dormant seeds absorbed water more rapidlythan dormant seeds during imbibition on distilled water. Thiseffect was detected first in the embryo-scutellar region (8h) and later in the proximal endosperm (12 h). Cutting the testaand pericarp close to the embryo or scarification with KOH promotedrapid embryo/scutellum hydration and germination. Cutting atthe middle part of the caryopsis did not enhance embryo hydrationnor did it greatly improve germination. The sensitivity of waterdistribution to the phytochrome germination effect was examined.Significant differences in imbibitional water uptake by embryos-scutellumtissue were detected by 18 h following red-light (germinationpromoter) compared with far-red (germination inhibitor) treatment.The results indicated that both the rate and the sequence ofembryo/scutellum hydration were important in initiating germinationin dormant seeds. A refinement of the model that describes waterimbibition in wild oat seeds during the early stages of germinationis discussed. Key words: Water uptake, water distribution, Avena fatua, seed coat modification, light quality, dormant and non-dormant seeds  相似文献   

16.
The formation of multiple forms of amylases in germinating rice (Oryza sativa L. cv Kimmaze) grains was examined by means of isoelectric focusing, cross-immunoelectrophoresis, and rocket-line immunoelectrophoresis followed by a reaction of enzymic characterization by using β-limit dextrin or starch as substrate. The constituents detected by isoelectric focusing were identified as three electrophoretically heterogeneous antigens. The major α-amylase bands A and B corresponded to a same antigen, the main portion of which was produced within 2 days' germination. The bulk of α-amylase D appeared between 2 and 4 days' germination. Component E, a debranching enzyme according to its action on the β-limit dextrin, already exists in the ungerminated seeds; its amount decreases within the first 2 days of germination and increases again thereafter.

Evidence showing that β-amylase (band C) is produced by the scutellum at an early stage of germination was provided. The enzyme appeared in a suspension of the scutellum after a prolonged incubation.

  相似文献   

17.
GDP-L-fucose-N-acetyl-beta-D-glucosaminide alpha 1----6fucosyltransferase which catalyzes the transfer of fucose from GDP-L-fucose to the asparagine-linked N-acetyl-beta-D-glucosamine of N-linked glycoproteins has been purified 37,000-fold from cultured human skin fibroblasts. The Km values for the substrate asialoagalactotransferrin glycopeptide, and GDP-L-fucose were 66 and 4.2 microM, respectively. The Vmax was 1.4 mumols/mg/min. The key step in enzyme purification was affinity chromatography using the immobilized substrate asialoagalactotransferrin glycopeptide-CH-Sepharose. The affinity-purified enzyme had a minimum substrate requirement for a biantennary oligosaccharide with GlcNAc in terminal position, having a Km value of 55 microM. It was heretofore unexpected that the oligosaccharide would serve as substrate, since the site of enzyme activity is GlcNAc-1-linked to Asn. Although the presence of amino acids on this oligosaccharide enhanced the activity 3-fold, it is proposed that this may be the result of an alpha/beta anomeric mixture (2:1) of oligosaccharide used in these studies with only the beta anomer active as substrate. The implication is that the amino acid is required only to retain the beta anomeric position of the substrate. Removal of GlcNAc or addition of Gal to either the oligosaccharide or glycopeptide destroyed the ability to serve as substrates. In addition, di-N-acetylchitobiose, tri-N-acetylchitotriose and GlcNAc beta 1----Asn were nonpermissible substrates. This rigid substrate requirement is unique among fucosyltransferases thus far reported, since the natural substrates for the other enzymes may be substituted by one of several disaccharides.  相似文献   

18.
Profiles of pH dependence and activities of live proteolytic enzymes, amino- and carboxypeptidase and endopeptidases active at pH 3.8, 5.4 and 7.5, with casein as substrate, were determined in crude extracts from the various organs of corn seedlings during germination and early development (30°C, dark, 8 d). With respect to the endopeptidases, caseolytic activities at pH 3.8, 5.4 and 7.5 in extracts from endosperm increased concurrently with loss of endosperm N during germination; however, the relative amounts of the pH 7.5 activity were very small. In scutellum extracts, caseolytic activities at both pH 5.4 and 7.5 increased during the initial stages of development but only the increase at pH 5.4 was concurrent with loss of scutellar N. In shoot extracts, caseolytic activities at pH 5.4 and 7.5 were very low and remained relatively constant. There was a progressive increase in shoot N with time. In root extracts, caseolytic activities at pH 5.4 and 7.5 were higher (3-fold) than in shoot extracts. The activity at pH 5.4 remained constant while the activity at pH 7.5 increased during germination. The rate of accumulation of N by the root was low after day 5. The pattern and ratio but not the amounts of the pH 5.4 and 7.5 caseolytic activities of the root were similar to those observed in senescing leaves of field-grown corn. Addition of mercaptoethanol increased (several-fold) the caseolytic activities at pH 3.8 and 5.4, especially the latter, but not the pH 7.5 activity in endosperm extracts and increased the pH 5.4 activity in extracts from scutellum (30%) and roots (30%) while the effect in shoot extracts was negligible. Carboxypeptidase activity was relatively low in young tissue (root tip, 3-d-old shoots) and increased with development of the various organs except the roots (whole) where the activity remained relatively constant. The increases in carboxypeptidase activities were concurrent with decreases in N from endosperm and scutellum; this result indicates that this enzyme in these tissues may be involved (cooperatively with endopeptidases) in the mobilization of reserve protein.Of all the enzymes tested, only carboxypeptidase activity was markedly (in excess of 50%) inhibited by phenylmethylsulfonylfluoride. Only aminopeptidase activity was found in appreciable amounts in endosperm and scutellum of dry kernels. Aminopeptidase activity was highest in organs with high metabolic activity (scutella, shoot, root tips) and decreased in plant parts undergoing rapid loss of nitrogen (endosperm, senescing leaves).Abbreviations AP aminopeptidase - CA caseolytic activity - CP carboxypeptidase - ME mercaptoethanol  相似文献   

19.
Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.  相似文献   

20.
Aminopeptidases play important role in the mobilization of storage proteins at the cotyledon during seed germination. It is often referred as inducible component of defense against herbivore attack. However the role of aminopeptidase in response to pathogen attack in germinating seeds is remained to be unknown. An attempt was made to analyze change in the aminopeptidase (EC 3.4.11.1) activity during germination of pigeonpea (Cajanus cajan L.) seeds by infecting the seeds with fungi. Two aminopeptidase activity bands (AP1 and AP2) were detected in control as well as infected pigeonpea seeds. During latter stages of germination in control seeds, AP1 activity was replaced by AP2 activity. However AP1 activity was significantly induced in germinating seeds infected with Fusarium oxysporum f.sp. ciceri and Aspergillus niger var. niger. The estimated molecular weights of AP1 and AP2 were ∼97 and 42.8 kDa respectively. The induced enzyme was purified up to 30 fold by gel filtration chromatography. The purified enzyme was preferentially cleaved leucine p-nitroanilide than alanine p-nitroanilide. The enzyme was strongly inhibited by bestatin and 1,10-phenanthroline. Almost 50% of enzyme activity was inhibited by ethylene diamine tetra acetate. The purified enzyme showed broad pH optima ranging from pH 6.0 to 9.0 and optimum at pH 8.5. The induction of aminopeptidase activity during pigeonpea seed germination and in response to pathogen attack indicates significant involvement of these enzymes in primary as well as secondary metabolism of the seeds. These findings could be helpful to further dissect defensive role of aminopeptidases in seed germination which is an important event in plant's life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号