首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To quantitatively understand intracellular Na+ and Cl homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl channel (ICFTR) during the β1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of β1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl concentration and cell volume. These results are consistent with experimental data. Increasing the density of ICFTR shortened APD and augmented the peak amplitudes of the L-type Ca2+ current (ICaL) and the Ca2+ transient during the β1-adrenergic stimulation. This indirect inotropic effect was elucidated by the increase in the driving force of ICaL via a decrease in plateau potential. Our model reproduced the experimental data demonstrating the decrease in intracellular Na+ during the β-adrenergic stimulation at 0 or 0.5 Hz electrical stimulation. The decrease is attributable to the increase in Na+ affinity of Na+/K+ pump by protein kinase A. However it was predicted that Na+ increases at higher beating rate because of larger Na+ influx through forward Na+/Ca2+ exchange. It was demonstrated that dynamic changes in Na+ and Cl fluxes remarkably affect the inotropic action of isoproterenol in the ventricular myocytes.  相似文献   

2.
The efficiency of (Na+ + K+)-ATPase (i.e. the amount of K+ pumped per ATP hydrolyzed) in intact tumorigenic cells was estimated in this study. This was accomplished by simultaneously measuring the rate of ouabain-sensitive K+ uptake and oxygen consumption in tumorigenic cell suspensions during the reintroduction of K+ to K+-depleted cells. The ATP turnover was then estimated by assuming 5.6–6 ATP/O2 as the stoichiometry of NADH-linked respiration in these cells. In the three cell lines tested (hamster and chick embryo cells transformed with Rous sarcoma virus and Ehrlich ascites cells), the K+/ATP ratio was approximately 2, the same value as that found in normal tissues. Furthermore, only 20% of the total ATP production of these cells was used by (Na+ + K+)-ATPase.  相似文献   

3.
A highly sensitive fluorimetric assay using 3-O-methylfluorescein phosphate as substrate was used in the determination of K+-dependent phosphatase activity in preparations of rat skeletal muscle. The gastrocnemius muscle was chosen because of mixed fibre composition. Crude, detergent treated homogenate was used so as to avoid loss of activity during purification. K+-dependent phosphatase activities in the range 0.19–0.37 μmol · (g wet weight)−1 · min−1 were obtained, the value decreasing with age and K+-deficiency. Complete inhibition of the K+-dependent phosphatase was obtained with 10−3 M ouabain. Using a KSCN-extracted muscle enzyme the intimate relation between K+-dependent phosphatase activity and (Na+ + K+)-activated ATP hydrolysis could be demonstrated. A molecular activity of 620 min−1 was estimated from simultaneous determination of K+-dependent phosphatase activity and [3H]ouabain binding capacity using the partially purified enzyme preparation. The corresponding enzyme concentration in the crude homogenates was calculated and corresponded well with the number of [3H]ouabain binding sites measured in intact muscles or biopsies hereof.  相似文献   

4.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21‰ salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6 ± 4.9 U mg− 1 and K0.5 = 1.31 ± 0.05 mmol L− 1. Stimulation of K+-phosphatase activity by magnesium (Vmax = 125.3 ± 7.5 U mg− 1; K0.5 = 2.09 ± 0.06 mmol L− 1), potassium (Vmax = 134.2 ± 6.7 U mg− 1; K0.5 = 1.33 ± 0.06 mmol L− 1) and ammonium ions (Vmax = 130.1 ± 5.9 U mg− 1; K0.5 = 11.4 ± 0.5 mmol L− 1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI = 304.9 ± 18.3 μmol L− 1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the ≈2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar α-subunit expression in gill tissue from shrimps acclimated to 21‰ salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

5.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

6.
A novel uptake system for the unusual sulfonated amino acid taurine was discovered in the prokaryote, encapsulated Staphylococcus aureus strain M. This strain has been shown previously to contain taurine in its capsular polysaccharide. Taurine uptake by whole cells incubated in buffer showed a saturable dependency upon Na+ and taurine uptake was itself a saturable process, stimulated by glucose, and markedly affected by temperature. No evidence was found for the inducibility of taurine uptake. In the presence of 10 mM NaCl Lineweaver-Burk plots revealed a Km of 42 μM and Vmax of 4.6 nmol/min per mg dry weight for taurine uptake at 37°C. Increasing concentrations of Na+ decreased the Km of the system and appeared to increase the Vmax. Of various other cations tested only Li+ supported marked taurine uptake. Excess unlabelled taurine did not cause efflux of radioactivity taken up. Taurine was taken up into cold trichloroacetic acid-soluble material and did not chromatograph as taurine, indicating rapid metabolism during or closely following uptake. Taurine uptake appeared to occur via a highly specific system because amino acids representing the major known groups of amino acid transport systems in S. aureus did not inhibit taurine uptake, and uptake was only slightly diminished by the structurally closely related compounds hypotaurine and 3-amino-1-propane sulfonic acid. Sulfhydryl group reagents, electron transport inhibitors, an uncoupler and inhibitors of Na+-linked transport processes inhibited taurine uptake. A variety of other metabolic inhibitors had little effect on taurine uptake.  相似文献   

7.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel–nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS–PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH2-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues −180 to −175, NH2-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH2-terminal sequence, LDXNQLY, corresponding to residues −73 to −67 of the proregion peptide and thus were generated by removal of 126 residues from the NH2-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37°C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (kcat/Km) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM1 s−1, respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing 2 × 109 High Five cells.  相似文献   

8.
Summary To study the possible role of intracellular Ca (Ca i ) in controlling the activities of the Na+–K+ pump, the Na+–K+ cotransport and the Na+/Li+ exchange system of human erythrocytes, a method was developed to measure the amount of Ca embodied within the red cell. For complete removal of Ca associated with the outer aspect of the membrane, it proved to be essential to wash the cells in buffers containing less than 20nm Ca. Ca was extracted by HClO4 in Teflon® vessels boiled in acid to avoid Ca contaminations and quantitated by flameless atomic absorption. Ca i of fresh human erythrocytes of apparently healthy donors ranged between 0.9 and 2.8 mol/liter cells. The mean value found in females was significantly higher than in males. The interindividual different Ca contents remained constant over periods of more than one year. Sixty to 90% of Ca i could be removed by incubation of the cells with A23187 and EGTA. The activities of the Na+–K+ pump, of Na+–K+ cotransport and Na+/Li+ exchange and the mean cellular hemoglobin content fell with rising Ca i ; the red cell Na+ and K+ contents rose with Ca i . Ca depletion by A23187 plus EGTA as well as chelation of intracellular Ca2+ by quin-2 did not significantly enhance the transport rates. It is concluded that the large scatter of the values of Ca i of normal human erythrocytes reported in the literature mainly results from a widely differing removal of Ca associated with the outer aspect of the membrane.  相似文献   

9.
10.
The nitrogen uptake and growth capabilities of the potentially harmful, raphidophycean flagellate Heterosigma akashiwo (Hada) Sournia were examined in unialgal batch cultures (strain CCMP 1912). Growth rates as a function of three nitrogen substrates (ammonium, nitrate and urea) were determined at saturating and sub-saturating photosynthetic photon flux densities (PPFDs). At saturating PPFD (110 μE m−2 s−1), the growth rate of H. akashiwo was slightly greater for cells grown on NH4+ (0.89 d−1) compared to cells grown on NO3 or urea, which had identical growth rates (0.82 d−1). At sub-saturating PPFD (40 μE m−2 s−1), both urea- and NH4+-grown cells grew faster than NO3-grown cells (0.61, 0.57 and 0.46 d−1, respectively). The N uptake kinetic parameters were investigated using exponentially growing batch cultures of H. akashiwo and the 15N-tracer technique. Maximum specific uptake rates (Vmax) for unialgal cultures grown at 15 °C and saturating PPFD (110 μE m−2 s−1) were 28.0, 18.0 and 2.89 × 10−3 h−1 for NH4+, NO3 and urea, respectively. The traditional measure of nutrient affinity—the half saturation constants (Ks) were similar for NH4+ and NO3 (1.44 and 1.47 μg-at N L−1), but substantially lower for urea (0.42 μg-at N L−1). Whereas the α parameter (α = Vmax/Ks), which is considered a more robust indicator for substrate affinity when substrate concentrations are low (<Ks), were 19.4, 12.2 and 6.88 × 10−3 h−1/(μg-at N L−1) for NH4+, NO3 and urea, respectively. These laboratory results demonstrate that at both saturating and sub-saturating N concentrations, N uptake preference follows the order: NH4+ > NO3 > urea, and suggests that natural blooms of H. akashiwo may be initiated or maintained by any of the three nitrogen substrates examined.  相似文献   

11.
1. (1) VO3 combines with high affinity to the Ca2+-ATPase and fully inhibits Ca2+-ATPase and Ca2+-phosphatase activities. Inhibition is associated with a parallel decrease in the steady-state level of the Ca2+-dependent phosphoenzyme.
2. (2) VO3 blocks hydrolysis of ATP at the catalytic site. The sites for VO3 also exhibit negative interactions in affinity with the regulatory sites for ATP of the Ca2+-ATPase.
3. (3) The sites for VO3 show positive interactions in affinity with sites for Mg2+ and K+. This accounts for the dependence on Mg2+ and K+ of the inhibition by VO3. Although, with less effectiveness, Na+ substitutes for K+ whereas Li+ does not. The apparent affinities for Mg2+ and K+ for inhibition by VO3 seem to be less than those for activation of the Ca2+-ATPase.
4. (4) Inhibition by VO3 is independent of Ca2+ at concentrations up to 50 μM. Higher concentrations of Ca2+ lead to a progressive release of the inhibitory effect of VO3.
Keywords: Ca2+-ATPase; Vanadate inhibition; K+; Li+; (Red cell membrane)  相似文献   

12.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the α- and β-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis α-toxin-Sepharose columns. The data suggest that the α-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

13.
High concentration (1.0 M) of KSCN, but not of NaSCN, induced lysis of slightly halophilic Vibrio alginolyticus and moderately halophilic Vibrio costicolus, and the decrease in absorbance of the cell suspension was complete after 30 min at 25°C. Replacement of K+ with Na+ effectively prevented the lysis by SCN. K+ salts of NO3, Br, however, induced no significant lysis. In electron micrographs, a prolonged exposure of the cells of V. alginolyticus to 1.0 M KSCN displaced the nucleoplasm to maintain close contact with the cell membranes. After 40 min of interaction, 50% of the cellular protein, 96% of RNA and 94% of DNA were recovered in the lysed cells. In contrast to lysis in hypotonic conditions, the lysis induced by KSCN is due mainly to a partial release of protein from the cells. V. costicolus was more susceptible to SCN than V. alginolyticus, whereas nonhalophilic Escherichia coli was resistant to 1.0 M KSCN. Thus, lysis by SCN is characteristic of halophilic bacteria and cell membranes of more halophilic bacteria are more susceptible to chaotropic anions. The protective effect of Na+ observed here was considered to be manifested by specific interactions of Na+ with components of cell membranes, thereby rendering their structures resistant to the action of chaotropic anions.  相似文献   

14.
Effects of salinity and nitrate nitrogen (NO3-N) on ion accumulation and chlorophyll fluorescence were monitored for two populations of Suaeda salsa grown from seeds in a greenhouse experiment. One population inhabits the intertidal zone and the other occurs on inland saline soils. Ion contents in soils and in leaves of the two populations were also investigated in field. In the greenhouse, seedlings were exposed to a NaCl concentration of 0.6 and 35.1 ppt, with 0.1 or 5 mM NO3-N treatments for 20 days. The contents of Na+ and Cl were higher, but NO3 was lower in soils of the intertidal zone than at the inland site. In the field, ion concentrations and the estimated contribution of these ions to osmotic potential in leaves showed no difference between the two populations, except that the estimated contribution of Na+ to osmotic potential in leaves of the intertidal population was lower than that in the inland population. In the greenhouse, in contrast, the concentration of Cl was lower, but NO3 concentration and the estimated contribution of NO3 to osmotic potential were higher, in the leaves of plants from the intertidal zone. Salinity had no effect on the maximal efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII). The results indicated that S. salsa from the intertidal zone was better able to regulate Cl to a lower level, and accumulate NO3 even with low soil NO3 concentrations. Tolerance of the PSII machinery to high salinity stress may be an important characteristic for the studied species supporting growth in highly saline environments.  相似文献   

15.
Summary The effects of complete substitution of gluconate for mucosal and/or serosal medium Cl on transepithelial Na+ transport have been studied using toad urinary bladder. With mucosal gluconate, transepithelial potential difference (V T) decreased rapidly, transepithelial resistance (R T) increased, and calculated short-circuit current (I sc) decreased. CalculatedE Na was unaffected, indicating that the inhibition of Na+ transport was a consequence of a decreased apical membrane Na+ conductance. This conclusion was supported by the finding that a higher amiloride concentration was required to inhibit the residual transport. With serosal gluconateV T decreased,R T increased andI sc fell to a new steady-state value following an initial and variable transient increase in transport. Epithelial cells were shrunken markedly as judged histologically. CalculatedE Na fell substantially (from 130 to 68 mV on average). Ba2+ (3mm) reduced calculatedE Na in Cl Ringer's but not in gluconate Ringer's. With replacement of serosal Cl by acetate, transepithelial transport was stimulated, the decrease in cellular volume was prevented andE Na did not fall. Replacement of serosal isosmotic Cl medium by a hypo-osmotic gluconate medium (one-half normal) also prevented cell shrinkage and did not result in inhibition of Na+ transport. Thus the inhibition of Na+ transport can be correlated with changes in cell volume rather than with the change in Cl per se. Nystatin virtually abolished the resistance of the apical plasma membrane as judged by measurement of tissue capacitance. With K+ gluconate mucosa, Na+ gluconate serosa, calculated basolateral membrane resistance was much greater, estimated basolateral emf was much lower, and the Na+/K+ basolateral permeability ratio was much higher than with acetate media. It is concluded the decrease in cellular volume associated with substitution of serosal gluconate for Cl results in a loss of highly specific Ba2+-sensitive K+ conductance channels from the basolateral plasma membrane. It is possible that the number of Na+ pump sites in this membrane is also decreased.  相似文献   

16.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

17.
The activity of the Escherichia coli K+ transport system TrkA was measured as a function of the cytoplasmic pH of the cell. For this purpose, pHin was decreased by the addition of the weak acids acetic acid, benzoic acid or salicylic acid to K+-depleted cells. Under these conditions, the initial rate of K+ uptake decreased strongly with pHin, and was almost independent of the acid used. This inhibition was due to a strong decrease in the Vmax for K+ uptake, which indicates that low cytoplasmic pH inactivates the TrkA K+ uptake system. The relevance of this inhibition for growth and metabolism at low pHin is discussed.  相似文献   

18.
Summary The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (K M for K 0 + =3.5mm;J max=30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl-dependent (Na++K+) cotransport system (K M for K 0 + =6.8mm;J max=20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+1Na+2Cl, the exchange of K i + for K 0 + . The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

19.
Summary Although an outwardly rectifying K+-conductance has been described in murine peritoneal macrophages and a murine macrophage cell line, the expression of this conductance in human monocyte-derived macrophages (HMDMs) is rare. Whole-cell current recordings in this study were obtained from HMDMs differentiated in adherent culture for varying periods of time following isolation and compared to currents obtained in human alveolar macrophages (HAMs) obtained from bronchoalveolar lavage. These studies were undertaken to compare ionic current expression in the in vitro differentiated macrophage to that of a human tissue macrophage. HAMs are the major population of immune and inflammatory cells in the normal lung and are the most readily available source of human tissue macrophages. Of the 974 HMDMs in the study obtained from a total of 36 donors, we were able to observe the presence of the inactivating outward current (I A ) which exhibited voltage-dependent availability in only 49 (or 5%) of the cells. In contrast, whole-cell current recordings from HAMs, revealed a significantly higher frequency ofI A expression (50% in a total of 160 cells from 26 donors). In the alveolar cell, there was no correlation observed between cell size and peakI A amplitude, nor was there a relationship between peakI A amplitude and time in culture. The current in both cell types was K+ selective and 4-aminopyridine (4-AP) sensitive.I A in both cell types inactivated with a time course which was weakly voltage-dependent and which exhibited a time constant of recovery from inactivation of approximately 30 sec. The time course of current inactivation was dependent upon the external K+ concentration. An increase in the time constant describing current decay was observed in elevated K+. Current activation was half-maximal at approximately –18 mV in normal bathing solution. Steady-state inactivation was half-maximal at approximately –44 mV. The presence of the outwardly rectifying K+ conductance may alter the potential of the mononuclear phagocyte to respond to extracellular signals mediating chemotaxis, phagocytosis, and tumoricidal functions.  相似文献   

20.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号