首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turbidity, structure, and rheological features during gelation via the Ugi multicomponent condensation reaction of semidilute solutions of alginate have been investigated at different polymer and cross-linker concentrations and reaction temperatures. The gelation time of the system decreased with increasing polymer and cross-linker concentrations, and a temperature rise resulted in a faster gelation. At the gel point, a power law frequency dependence of the dynamic storage modulus (G' proportional, variant omega(n)(')) and loss modulus (G' ' proportional, variant omega(n)(' ')) was observed for all gelling systems with n' = n' ' = n. By varying the cross-linker density at a fixed polymer concentration (2.2 wt %), the power law exponent is consistent with that predicted (0.7) from the percolation model. The value of n decreases with increasing polymer concentration, whereas higher temperatures give rise to higher values of n. The elastic properties of the gels continue to grow over a long time in the postgel region, and at later stages in the gelation process, a solidlike response is observed. The turbidity of the gelling system increases as the gel evolves, and this effect is more pronounced at higher cross-linker concentration. The small-angle neutron scattering results reveal large-scale inhomogeneities of the gels, and this effect is enhanced as the cross-linker density increases. The structural, turbidity, and rheological features were found to change over an extended time after the formation of the incipient gel. It was demonstrated that temperature, polymer, and cross-linker concentrations could be utilized to tune the physical properties of the Ugi gels such as structure, transparency, and viscoelasticity.  相似文献   

2.
This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.  相似文献   

3.
Ikeda S  Nishinari K 《Biopolymers》2001,59(2):87-102
Macroscopic and molecular structural changes during heat-induced gelation of beta-lactoglobulin, bovine serum albumin, ovalbumin, and alpha-lactalbumin aqueous dispersions were probed by the mechanical and CD spectroscopy, respectively. Aqueous solutions of the native globular proteins, except for alpha-lactalbumin, exhibited solid-like mechanical spectra-namely, the predominant storage modulus G' over the loss modulus G" in the entire frequency range examined (0.1-100 rad/s), suggesting that these protein solutions were highly structured even before gelation, possibly due to strong repulsions among protein molecules. Such solid-like structures were susceptible to nonlinearly large shear but recovered almost immediately at rest. During gelation by isothermal heating, major changes in the secondary structure of the globular proteins completed within a few minutes, while values of the modulus continued to develop for hours with maintaining values of tandelta (= G"/G') less than unity. As a result, a conventional criterion for mechanically defining the gelation point, such as a crossover between G' and G", was inapplicable to these globular protein systems. beta-Lactoglobulin gels that had passed the gelation point satisfied power laws (G' approximately G" approximately omega(n)) believed to be valid only at the gelation point, suggesting that fractal gel networks, similar to those of critical gels (i.e., gels at the gelation point), were formed.  相似文献   

4.
The formation of gel network structures during isothermal heating of whey protein aqueous dispersions was probed by mechanical spectroscopy. It was anticipated that the pathway of the sol-to-gel transition of whey protein dispersions is quite different from that of ordinary cross-linking polymers (e.g., percolation-type transition), since aqueous solutions of native whey proteins have been shown to be highly structured even before gelation, in our previous study. At 20 degrees C, aqueous dispersions of beta-lactoglobulin, the major whey protein, and those of whey protein isolate (WPI), a mixture of whey proteins, exhibited solid-like mechanical spectra, i.e., the predominant storage modulus G' over the loss modulus G", in a certain range of the frequency omega (1-100 rad/s), regardless of the presence or absence of added NaCl. The existence of the added salt was, however, a critical factor for determining transitions in mechanical spectra during gelation at 70 degrees C. beta-Lactoglobulin dispersions in 0.1 mol/dm(3) NaCl maintained the solid-like nature during the entire gelation process and, after passing through the gelation point, satisfied parallel power laws (G' approximately G" approximately omega(n)) that have been proposed for a critical gel (i.e., the gel at the gelation point) that possesses a self-similar or fractal network structure. In contrast, beta-lactoglobulin dispersions without added salt exhibited a transition from solid-like [G'(omega) > G"(omega)] to liquid-like [G'(omega) < G"(omega)] mechanical spectra before gelation, but no parallel power law behavior was recognized at the gelation point. During extended heating time (aging), beta-lactoglobulin gels with 0.1 mol/dm(3) NaCl showed deviations from the parallel power laws, while spectra of gels without added NaCl approached the parallel power laws, suggesting that post-gelation reactions also significantly affect gel network structures. A percolation-type sol-to-gel transition was found only for WPI dispersions without added salt.  相似文献   

5.
This paper reports the rheological behavior of chitosan solutions that have been cross-linked with different amounts of genipin, at body temperature and physiological pH. The effect of the cross-linker loading on the rheological properties of hydrogels has been evaluated. The oscillatory time sweep method was used to monitor the dynamic viscoelastic parameters during in situ (i.e., in the rheometer) gelation experiments, enabling the determination of the gelation time. The stress and frequency sweeps were employed to measure G' of the cured hydrogels. It was found that the solutions of chitosan cross-linked with genipin, under physiological conditions, could form relatively strong elastic gels when compared to those of pure chitosan. Moreover, the gelation time obtained from the crossover of G' and G' was in excellent agreement with the value obtained from the Winter-Chambon criterion. A significant reduction on this parameter was achieved even at low genipin concentrations. This behavior suggests that these formulations are able to be produced in situ and thus constitute promising matrices for cells and bioactive molecule encapsulations.  相似文献   

6.
Arabinoxylan (AX) samples of decreasing ferulic acid (FA) contents were chemically prepared from water-extractable wheat arabinoxylans without affecting their other structural properties. Gels were obtained from these partially feruloylated WEAX (PF-WEAX) by enzymatic covalent cross-linking of FA leading to the formation of diferulic (di-FA) and tri-ferulic acid (tri-FA). WEAX gelling ability was found related to the WEAX FA content whereas the gel structure and properties depended on the density of newly formed covalent cross-links. FA content of WEAX ranging from 1.4 to 2.3 microg/mg AX gave gels with di-FA cross-links contents from 0.20 to 0.43 microg/mg AX and G' values from 5 to 44 Pa. For WEAX gels with initial FA contents from 1.6 to 2.3 microg/mg AX, average mesh size ranging from 331 to 263 nm were calculated from swelling experiments. Cross-linking densities of gels, determined from swelling experiments, were higher than those that could be theoretically estimated from the di-FA and tri-FA content of WEAX gels. This result suggests that, in addition to di-FA and tri-FA, higher ferulate cross-linking and physical entanglements would contribute to the final WEAX gel structure.  相似文献   

7.
Rectal etodolac–Poloxamer gel systems composed of Poloxamer and bioadhesive polymers were developed and evaluated. Hydroxypropylmethyl cellulose, poly)vinyl) pyrrolidone, methyl cellulose, hydroxyethylcellulose, and carbopol were examined as mucoadhesive polymers. The characteristics of the rectal gels differed according to the properties of mucoadhesive polymers. The physicochemical properties such as gelation temperature, gel strength, and bioadhesive force of various formulations were investigated. The analysis of release mechanism showed that the release of etodolac was proportional to the square root of time, indicating that etodolac might be released from the suppositories by Fickian diffusion. The anti-inflammatory effect of etodolac–Poloxamer gel system was also studied in rats. Moreover, liquid suppository of etodolac did not cause any morphological damage to the rectal tissues. These results suggested that in situ gelling liquid suppository with etodolac and mucoadhesive polymer was a physically safe, convenient, and effective rectal dosage form for etodolac.  相似文献   

8.
Potassium starch polyacrylamide, potassium acrylate, a copolymer of potassium acrylate and acrylamide, and hydroxyethylcellulose carrier gels were tested to find a fluid drilling material suited for synthetic seeding of sweet potato (Ipomoea batatas (L.) Lam.) somatic embryos. Somatic embryo developmental stage and size, and maturation (incubation) time were also evaluated to improve plantlet formation. All embryos suspended in the fluidized hydroxyethylcellulose gel were viable after six days and 7% developed into plantlets after two weeks. Up to 97% of the somatic embryos suspended in acrylate and/or acrylamide gels died within six days. Root development was at least 10% and plantlet development at least 30% greater when embryos were subcultured on basal medium for 16 instead of 25 days prior to placement and suspension in hydroxyethylcellulose gel. Up to 25% more plantlets were obtained from embryos at the elongated torpedo stage than those at the cotyledonary or torpedo stages of development. When suspended in hydroxyethylcellulose gel embryo length had no effect on the percentage of plantlets obtained.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog medium (1962) - PC copolymer of potassium acrylate and acrylamide - PSA potassium starch polyacrylamide - PA potassium acrylate - HEC hydroxyethylcellulose - ODR oxygen diffusion rate Florida Agr. Expt. Sta., Journal Series No. R-00253 Mention of proprietary products is for convenience of reader only, and does not constitute endorsement by the University of Florida  相似文献   

9.
This study describes the formulation and characterization of binary interactive polymeric systems, designed as platforms for improved drug delivery to mucosal sites. Binary interactive systems were manufactured containing hydroxyethylcellulose (HEC; 1-5% w/w) and polycarbophil (PC; 1-5% w/w) at pH 7, and their rheological (flow and dynamic), mechanical, and mucoadhesive properties were characterized, both before and after dilution with phosphate buffered saline (designed to mimic dilution by biological fluids). Physical interactions between HEC and PC were confirmed by the observed rheological synergy. Within the binary interactive systems increasing polymer concentration increased the storage modulus (G'), loss modulus (G' '), dynamic viscosity (eta'), hardness, compressibility, consistency, and mucoadhesion yet decreased the loss tangent. This was attributed to enhanced entanglements and interactions between adjacent polymer chains. Dilution with PBS altered the above properties; however, the binary interactive systems, particularly those containing higher concentrations of HEC, still exhibited predominantly elastic properties (high G', low tan delta). In light of this, it is suggested that the rheological and mucoadhesive properties of binary interactive systems composed of HEC (5% w/w) and PC (1-3% w/w) offered particular promise as platforms for topical mucosal drug delivery systems.  相似文献   

10.
In order to optimize the use of proteins as functional ingredients in foods, one needs more insight into the effects of environmental conditions (pH, ionic strength, and temperature) on the functional properties of protein. This paper summarizes the results of an extensive study on heat-induced gelation of ovalbumin (egg-white protein) and soybean protein in the concentration range from 10 to 35 g/100 g. It was the aim of the study to relate the rheological properties of thermally induced protein gels to the microstructure of the gel and the physicochemical properties of the constituent protein. The gelling behavior of the protein was quantified with rheological techniques, and the physical properties of the gels were determined, at small and large deformations. From the swelling/dissolving behavior of the gels in various media, the nature of the crosslinks was determined qualitatively. The microstructure of the gels was determined with electron microscopy. Nmr-spectroscopy was applied in order to elucidate changes in conformation during heating. It was found that the formation of a continuous covalently crosslinked network is not a prerequisite for thermally-induced protein gelation. The properties of a gel strongly depend on the pH at which the gel is formed. When heat-set at high pH(pH~10), a homogeneous, strong, and almost transparent gel is formed, consisting of flexible crosslinked protein gels. Heat-setting at low pH (pH 5) leads to the formation of a heterogeneous and weak gel, which easily exudes water. This gel consists of crosslinked aggregated protein. The ionic strength of the solvent in which the protein is dissolved and heat-set has a much lower effect on gel properties.  相似文献   

11.
Oscillatory shear rheometry has been used to study the gelation of beta-lactoglobulin at ambient in 50% v/v trifluoroethanol (TFE)/pH 7 aqueous buffer and in 50% v/v ethanol (EtOH)/water at pH 2. In contrast to what was found on heating aqueous solutions at pH 2 (Part 2 of this series), a more expected "chemical gelation"-like profile was found with modulus components G' and G' ' crossing over as the gels formed and then with G' ' passing through a maximum. In addition, for the EtOH system, there was a significant modulus increase at long time, suggestive of a more complex two-step aggregation scheme. Modulus-concentration relationships were obtained for both systems by extrapolating cure data to infinite time. For the TFE gels, this data was accurately described by classical branching theory, although it could also be approximated by a constant power--law relationship. Only the latter described the modulus--concentration data for the gels in ethanol, but there were problems here of greater frequency dependence of the modulus values and much less certain extrapolation. Gel times for the TFE systems showed higher power laws in the concentration than could be explained by the branching theory in its simplest form being similar, in this respect, to the heat-set systems at pH 2. Such power laws were harder to establish for the EtOH gels as for these there was evidence of gel time divergence close to a critical concentration. Reduced G'/G'inf versus t/tgel data were difficult to interpret for the gels in ethanol, but for the TFE system they were consistent with previous results for the heat-set gels and approximated master curve superposition. The frequency and temperature dependences of the final gel moduli were also studied. In general, the networks induced by alcohols appeared more flexible than those obtained by heating.  相似文献   

12.
Weng L  Chen X  Chen W 《Biomacromolecules》2007,8(4):1109-1115
The gelation kinetics of an in situ gelable hydrogel formulated from oxidized dextran (Odex) and N-carboxyethyl chitosan (CEC) was investigated rheologically. Both Schiff base mediated chemical and physical crosslinking account for its rapid gelation (30-600 s) between 5 and 37 degrees C. The correlation between gelation kinetics and hydrogel properties with Odex/CEC concentration, their feed ratio, and temperature were elucidated. The gelation time determined from crossing over of storage moduli (G') and loss moduli (G' ') was in good agreement with that deduced from frequency sweeping tests according to the Winter-Chambon power law. The power law exponents for a 2% (w/v) Odex/CEC solution (ratio 5:5) at the gel point was 0.61, which is in excellent agreement with the value predicted from percolation theory (2/3). Temperature dependence of gelation time for the same hydrogel formulation is well-described by an Arrhenius plot with its apparent activation energy calculated at 51.9 kJ/mol.  相似文献   

13.
The microstructure, kinetics of gelation, and rheological properties have been investigated for gels of nonamidated pectin (C30), amidated pectin (G), and saponified pectin (sG) at different pH values, both with and without sucrose. The low-methoxyl (LM) pectin gels were characterized in the presence of Ca(2+) by oscillatory measurements and transmission electron microscopy (TEM). The appearance of the gel microstructure varied with the pH, the gel structure being sparse and aggregated at pH 3 but dense and somewhat entangled at pH 7. During gel formation of pectins G and C30 at pH 3 there was a rapid increase in G' initially followed by a small increase with time. At pH 7 G' increased very rapidly at first but then remained constant. The presence of sucrose influenced neither the kinetic behavior nor the microstructure of the gels but strongly increased the storage modulus. Pectins G and C30 showed large variations in G' at pH values 3, 4, 5, and 7 in the presence of sucrose, and the maximum in G' in the samples occurred at different pH values. Due to its high Ca(2+) sensitivity, pectin sG had a storage modulus that was about 50 times higher than that of its mother pectin G at pH 7.  相似文献   

14.
L M Soby  A M Jamieson  J Blackwell  N Jentoft 《Biopolymers》1990,29(10-11):1359-1366
The linear viscoelastic and rheological properties of high molecular weight ovine submaxillary mucin (OSM) solution have been investigated in terms of the Newtonian steady-flow viscosity [eta(gamma)], the complex oscillatory viscosity [eta*(omega)], and the storage and loss shear moduli [G'(omega) and G"(omega)]. It was observed that tau(gamma), eta*(omega), and G'(omega) are always higher when OSM is dissolved in 0.1M NaCl than when at the same concentration in 6M GdnHCl. This is consistent with previous observations that submaxillary mucins self-associate in 0.1M NaCl to form large aggregates, which are disrupted in 6M GdnHCl. As the OSM concentration increases, the appearance of a plateau shear modulus indicates the formation of a gel network in both solvents. The results suggest gelation involves specific intermolecular interactions, perhaps due to hydrophobic forces between interdigitated oligosaccharide side chains. The viscoelastic behavior of OSM solution at high concentration is thus similar to that reported in the literature for porcine gastric mucin (PGM). However, the OSM gels are mechanically weaker, having moduli that are an order of magnitude lower than those for PGM gels of comparable concentration. The oligosaccharide side chains of OSM consist of only 1-2 sugar units compared to 10-15 for PGM, but it appears that this is sufficient to allow for intermolecular interaction and the formation of weak gels.  相似文献   

15.
The synergistic interaction between pectin and chitosan in aqueous acid solution and in the gel phase has been studied by oscillatory shear measurements. Mixtures of pectin and chitosan form thermoreversible gels over a broad composition range by lowering the temperature. The value of the gelation temperature depends on the composition of the mixture, with low values for mixtures with low pectin contents. For incipient gels, a power law can describe the frequency dependence of the complex viscosity, with power law exponents close to -1. The gel evolution of pectin-chitosan mixtures upon a temperature quench below the gel point has been studied. Evidence is provided for a relation between gelation and phase separation in the process of temperature-induced gelation of pectin-chitosan mixtures. A simple model is proposed to rationalize the gelation process in these systems.  相似文献   

16.
Lignin gel with unique swelling property   总被引:1,自引:0,他引:1  
Lignin gels were prepared from acetic acid lignin by use of polyethylene glycol diglycidyl ether as cross-linker. The gels were found to swell in aqueous ethanol solution, in particular 50% (v/v) solution. In addition, they also swelled in alkaline solution and shrank upon heating. A literature search showed that investigation on gel swelling in aqueous ethanol has not been reported so far. Gels prepared from the cross-linker alone and its analogues did not show such swelling characteristics in aqueous ethanol. Therefore, the unique swelling property must be attributable to an intrinsic property of lignin.  相似文献   

17.
We examined a methylcellulose (MC) formulation that gels at body temperature for enteral alimentation. Betaine was found to have a lowering effect on the gelation temperature of the MC solution. The thermal gelation temperature of a body heat-responsive (BHR) gelling MC formulation, consisting of 2% MC, 15% glucose, 1.2% sodium citrate, and 3.5% betaine mixture, was approximately 32 °C, indicating that it could gel in response to body heat. Glucose release from the BHR gels was delayed at 37 °C in an in vitro study. In rats, oral administration of BHR gelling MC formulation delayed an increase in blood glucose and appearance of 13CO2 in expired air in a 13C-acetate breath test in comparison with the control. These results suggested that the BHR gelling MC formulation was gelled in the stomach and delayed gastric emptying after oral administration and glucose in the gels was absorbed slowly.  相似文献   

18.
The swelling behavior of gelatin gels when immersed in buffer or in osmotically active solutions of dextran 500 has been studied, and the results can be described by means of the Flory-Rehner theory of the thermodynamic properties of three-dimensional network structures. The density of crosslinkages formed in the gel is found to be related to the concentration of gelatin at which gelation occurs. Values of rigidity moduli are estimated from the density of crosslinkages by use of the statistical thermodynamic theory of rubber elasticity. These values are in excellent agreement with direct measurements.  相似文献   

19.
This study is focussed on the influence of pH on the gel forming properties of soy protein isolate and purified glycinin in relation to denaturation and aggregation. At pH 7.6 more fine-stranded gels were formed characterised by low G' values, and a smooth, slightly turbid appearance, whereas at pH 3.8 coarse gels were obtained with a high stiffness and a granulated, white appearance. Low G' values, as found at pH 7.6, correlate with a high solubility of glycinin and soy protein isolate (ca. 50%) after heating at low protein concentration. At pH 3.8 all protein precipitated upon heating, which correlates with relatively high G' values. The role of beta-conglycinin during gelation of SPI seems to be minor at pH 7.6, which is indicated by the fact that, in contrast to pH 3.8, notable gel formation did not start upon heat denaturation of beta-conglycinin. Furthermore, the mechanism of gel formation seems to be affected by pH, because at pH 7.6, in contrast to pH 3.8, the disulphide bridge between the acidic and the basic polypeptide of glycinin is broken upon heating.  相似文献   

20.
Rheological changes occurring during the gelation of low methoxy pectins in the presence of calcium ions were investigated. The onset of gelation was found to correspond to the same macroscopic rheology (i.e. value of G') whatever the gelling conditions. Sol-gel diagrams for calcium pectin systems were mapped out in terms of calcium level, temperature and pectin concentration. The thermodynamic parameters for the cross-linking process were derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号