首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the protein downstream of the IRES provides strong evidence for the function of the protein placed upstream of the IRES.  相似文献   

2.
In attempts to increase the immunogenicity of recombinant antigens, a number of particulate antigen presentation systems have been developed. In this study, we used human immunodeficiency virus Gag particles as carriers for the human immunodeficiency virus envelope V3 region. Gag:V3 fusion proteins were expressed from baculovirus expression vectors; they migrated to the insect cell membrane and budded from the cells as hybrid particles. An immunization study carried out with rats showed that the particles elicited a strong anti-Gag antibody response and a weak antibody response to the V3 region. A strong anti-V3 cytolytic T-cell response was elicited in immunized mice. These data show that retroviral Gag particles can be used as antigen presentation vehicles.  相似文献   

3.
The enhanced green fluorescent protein (EGFP) is increasingly used as a reporter gene in viral vectors for a number of applications. To establish a system to study the activity of cis-acting cellular regulatory sequences, we deleted the viral enhancer in EGFP-carrying retroviral vectors and replaced it with cell type-specific elements. In this study, we use this system to demonstrate the activity of the human CD2 lymphoid-specific and the Tie2 endothelial cell type-specific enhancers in cell lines and in primary cells transduced by retroviral vectors. Furthermore, we compare findings obtained with EGFP as the reporter gene to those obtained replacing EGFP with d2EGFP, an unstable variant of EGFP characterized by a much shorter half-life compared to EGFP, and by reduced accumulation in the cells. d2EGFP-carrying vectors were generated at titers which were not different from those generated by the corresponding vectors carrying EGFP. Moreover, the activity of a Moloney murine leukemia virus enhancer could be readily detected following transduction of target cells with either EGFP- or d2EGFP-carrying vectors. However, the activity of the relatively weak CD2 and Tie2 enhancers was exclusively detected using EGFP as the reporter gene.These findings indicate that enhancer replacement is a feasible and promising approach to address the function of cell type-specific regulatory elements in retroviral vectors carrying the EGFP gene.  相似文献   

4.
The development of rapid, efficient, and safe methods for generating Ag-specific T cells is necessary for the clinical application of adoptive immunotherapy. We show that B cells stimulated with CD40 ligand and IL-4 (CD40-B cells) can be efficiently transduced with retroviral vectors encoding a model Ag, CMV tegument protein pp65 gene, and maintain high levels of costimulatory molecules after gene transfer. CTL lines specific for pp65 were readily generated in all four healthy CMV-seropositive donors by stimulating autologous CD8(+) T cells with these transduced CD40-B cells, both of which were derived from 10 ml peripheral blood. ELISPOT assays revealed that the CTL lines used multiple HLA alleles as restricting elements. Thus, CD40-B cells transduced retrovirally with Ag-encoding cDNA can be potent APC and facilitate to generate Ag-specific CTL in vitro.  相似文献   

5.
The capacity to produce large amounts of protein in mammalian cells is important in several contexts, including large-scale generation of biologically useful proteins, gene therapy, and transdominant genetics in cultured cells. For transdominant genetics, retroviral vectors are especially useful for delivery of expression libraries. However, even the potent CMV promoter is often unable to stimulate single-copy production of protein beyond the 1 microM level. We have adapted the HIV2/Tat expression system to retroviral vectors to boost expression above levels attainable with CMV promoters. We show that the system produces protein levels in four cell types tested which exceed levels attained by wild-type CMV or modified CMV promoters. In one cell line, the increase is 10-fold above CMV. Coupled with a stable expressed protein, levels of about 4 microM can be produced from presumptive single-copy retroviral transductants, and 30 microM from multicopy transductants.  相似文献   

6.
Although T-cell receptor (TCR) transgenic as well as knockout and knockin mice have had a large impact on our understanding of T-cell development, signal transduction and function, the need to cross these mice delays experiments considerably. Here we provide a methodology for the rapid expression of TCRs in mice using 2A peptide-linked multicistronic retroviral vectors to transduce stem cells of any background before adoptive transfer into RAG-1(-/-) mice. For simplicity, we refer to these as retrogenic mice. We demonstrate that these retrogenic mice are comparable to transgenic mice expressing three commonly used TCRs (OT-I, OT-II [corrected] and AND). We also show that retrogenic mice expressing male antigen-specific TCRs (HY, MataHari and Marilyn) facilitated the analysis of positive and negative selection in female and male mice, respectively. We examined various tolerance mechanisms in epitope-coupled TCR retrogenic mice. This powerful resource could expedite the identification of proteins involved in T-cell development and function.  相似文献   

7.
Cell polarization is a key feature of cell motility, driving cell migration to tissues. CD43 is an abundantly expressed molecule on the T-cell surface that shows distinct localization to the migrating T-cell uropod and the distal pole complex (DPC) opposite the immunological synapse via association with the ezrin-radixin-moesin (ERM) family of actin regulatory proteins. CD43 regulates multiple T-cell functions, including T-cell activation, proliferation, apoptosis, and migration. We recently demonstrated that CD43 regulates T-cell trafficking through a phosphorylation site at Ser-76 (S76) within its cytoplasmic tail. Using a phosphorylation-specific antibody, we now find that CD43 phosphorylation at S76 is enhanced by migration signals. We further show that CD43 phosphorylation and normal T-cell trafficking depend on CD43 association with ERM proteins. Interestingly, mutation of S76 to mimic phosphorylation enhances T-cell migration and CD43 movement to the DPC while blocking ERM association, showing that CD43 movement can occur in the absence of ERM binding. We also find that protein kinase CΘ can phosphorylate CD43. These results show that while CD43 binding to ERM proteins is crucial for S76 phosphorylation, CD43 movement and regulation of T-cell migration can occur through an ERM-independent, phosphorylation-dependent mechanism.  相似文献   

8.
The humoral and CD4+ cellular immune responses in mice following genetic immunization with three retroviral vectors encoding different forms of hepatitis B virus core antigen (HBcAg) and e antigen (HBeAg) were analyzed. The retroviral vectors induced expression of intracellular HBcAg (HBc[3A4]), secreted HBeAg (HBe[5A2]), or an intracellular HBcAg-neomycin phosphoryltransferase fusion protein (HBc-NEO[6A3]). Specific antibody levels and immunoglobulin G isotype restriction were highly dependent on both the host major histocompatibility complex and the transferred gene. Humoral and CD4+ cellular HBcAg and/or HBeAg (HBc/eAg)-specific immune responses following retroviral vector immunization were of a lower magnitude but followed the same characteristics compared with those after immunization with HBc/eAg in adjuvant. Two factors influenced the humoral responses. First, in vivo depletion of CD8+ cells in HBc-NEO[6A3]-immunized H-2k mice abrogated both HBcAg-specific antibodies and in vitro-detectable cytotoxic T lymphocytes. Second, priming of H-2b mice with an HBc/eAg-derived T-helper (Th) peptide in adjuvant prior to retroviral vector immunization greatly enhanced the HBc/eAg-specific humoral responses to all three vectors, suggesting that insufficient HBc/eAg-specific CD4+ Th-cell priming limits the humoral responses. In conclusion, direct injection of retroviral vectors seems to be effective in priming HBc/eAg-specific CD8+ but comparatively inefficient in priming CD4+ Th cells and subsequently specific antibodies. However, the limited HBc/eAg-specific CD4+ cell priming can effectively be circumvented by prior administration of a recombinant or synthetic form of HBc/eAg in adjuvant.  相似文献   

9.
Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5′- and 3′-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis.  相似文献   

10.
We report here the construction of a new packaging cell line, called MPAC, that packages defective retroviral vectors in viral particles with envelope proteins derived from a Moloney mink cell focus-inducing (MCF) polytropic virus. We characterized the tropism of MPAC-packaged retroviral vectors and show that some human cell lines can be infected with these vectors while others cannot. In addition, we show that some human cells fully support MCF virus replication while others either partially or fully restrict MCF virus replication.  相似文献   

11.
J S Jones  R W Allan    H M Temin 《Journal of virology》1993,67(6):3151-3158
Retrovirus particles contain a dimer of retroviral genomic RNA. A defined region of the retrovirus genome has previously been shown to be important for both dimerization and encapsidation. To study the importance of the position of this encapsidation and dimerization signal for retroviral replication and homologous recombination, we used a previously described spleen necrosis virus-based helper cell system. This system allows retroviral vectors with multiple genetic markers to be studied after a single cycle of retroviral replication. The sequence responsible for dimerization, the encapsidation/dimer linkage sequence (E/DLS), was moved from its normal location near the 5' end of the retroviral genome to a location near the 3' end of the genome. We characterized four pairs of retroviral vectors: (i) with both E/DLSs at the 5' ends of the genomes, (ii) with both E/DLSs at the 3' ends of the genomes, and (iii) two with one E/DLS at the 5' end of the genome and one at the 3' end of the genome. We found that moving the E/DLS to the 3' end of the genome resulted in at most an approximately factor of 5 reduction in virus titer in a single cycle of retroviral replication. Furthermore, we found no changes that were attributable to the alteration of the position of the E/DLS in the minus-strand DNA primer transfers or the plus-strand DNA primer transfers, the rate of homologous recombination, or the number of internal template switches in recombinant proviruses. These results indicate that any alignment or conformation necessary for retroviral replication or recombination is not the result of the position of the E/DLS.  相似文献   

12.
Recombinant retroviral vectors producing multicistronic mRNAs were constructed. Picornavirus putative internal ribosome entry sites (IRES) were used to confer cap-independent translation of an internal cistron. Internal cistrons were engineered by ligation of various lengths of the IRES of encephalomyocarditis (EMC) virus or polio virus to the E. coli chloramphenicol acetyltransferase (CAT) gene. The IRES/CAT fusions were introduced into retroviral vectors 3' to the translation stop codon of the neomycin phosphotransferase (NEO) gene, and the molecular constructs transfected into retroviral vector packaging lines. Retroviral vector producer cells efficiently express the internal CAT gene product only when the full length IRES is used. Both the EMC/CAT and polio/CAT retroviral vectors produced high titer vector supernatant capable of productive transduction of target cells. To test the generality of this gene transfer system, a retroviral vector containing an IRES fusion to the human adenosine deaminase (ADA) gene was constructed. Producer cell supernatant was used to transduce NIH/3T3 cells, and transduced cells were shown to express NEO, and ADA. Novel three-gene-containing retroviral vectors were constructed by introducing the EMC/ADA fusion into either an existing internal-promoter-containing vector, or a polio/CAT bicistronic vector. Producer cell clones of the three-gene vectors synthesize all three gene products, were of high titer, and could productively transduce NIH/3T3 cells. By utilizing cap-independent translation units, IRES vectors can produce polycistronic mRNAs which enhance the ability of retroviral-mediated gene transfer to engineer cells to produce multiple foreign proteins.  相似文献   

13.
Adoptive T-cell therapy with CD19-specific chimeric antigen receptors (CARs) is promising for treatment of advanced B-cell malignancies. Tumor targeting of CAR-modified T-cells is likely to contribute therapeutic potency; therefore we examined the relationship between the ability of CD19-specific CAR (CD19-CAR)-transduced T-cells to accumulate at CD19+ tumor lesions, and their ability to provide anti-tumor effects in xenograft mouse models. Normal human peripheral blood lymphocytes, activated with immobilized RetroNectin and anti-CD3 antibodies, were transduced with retroviral vectors that encode CD19-CAR. Expanded CD19-CAR T-cells with a high transgene expression level of about 75% produced IL-2 and IFN-γ in response to CD19, and lysed both Raji and Daudi CD19+ human B-cell lymphoma cell lines. Furthermore, these cells efficiently accumulated at Raji tumor lesions where they suppressed tumor progression and prolonged survival in tumor-bearing Rag2−/−γc−/− immunodeficient mice compared to control cohorts. These results show that the ability of CD19-CAR T-cells to home in on tumor lesions is pivotal for their anti-tumor effects in our xenograft models, and therefore may enhance the efficacy of adoptive T-cell therapy for refractory B-cell lymphoma.  相似文献   

14.
The production of stable cell lines is an important technique in cell biology, and it is often the rate-limiting step in studies involving the characterization of the function of novel genes or gene mutations. To facilitate this process, a novel family of retroviral vectors, the pE vector family, has been generated. The retroviral sequences in the pE vectors have been taken from the Moloney murine leukemia virus (MMLV) vector pMFG, which has been shown to express cDNA inserts more consistently and at higher levels than earlier generations of MMLV vectors. These vectors contain four different internal ribosome entry site-selectable markers, allowing high-efficiency selection of transductants expressing the desired cDNA. The pE vectors have an episomal design to allow long-term production of high-titer virus without the need for subcloning the producer line. Using a strategy of combinatorial infection followed by combinatorial drug selection, we demonstrate that the pE vectors can be used to generate stable, polyclonal cell lines expressing at least three novel cDNAs in less than 2 weeks. The use of these vectors will thus dramatically accelerate the production of complex stable cell lines.  相似文献   

15.
Epstein Barr Virus (EBV) infects more than 95% of the population whereupon it establishes a latent infection of B-cells that persists for life under immune control. Primary EBV infection can cause infectious mononucleosis (IM) and long-term viral carriage is associated with several malignancies and certain autoimmune diseases. Current efforts developing EBV prophylactic vaccination have focussed on neutralising antibodies. An alternative strategy, that could enhance the efficacy of such vaccines or be used alone, is to generate T-cell responses capable of recognising and eliminating newly EBV-infected cells before the virus initiates its growth transformation program. T-cell responses against the EBV structural proteins, brought into the newly infected cell by the incoming virion, are prime candidates for such responses. Here we show the structural EBV capsid proteins BcLF1, BDLF1 and BORF1 are frequent targets of T-cell responses in EBV infected people, identify new CD8+ and CD4+ T-cell epitopes and map their HLA restricting alleles. Using T-cell clones we demonstrate that CD4+ but not CD8+ T-cell clones specific for the capsid proteins can recognise newly EBV-infected B-cells and control B-cell outgrowth via cytotoxicity. Using MHC-II tetramers we show a CD4+ T-cell response to an epitope within the BORF1 capsid protein epitope is present during acute EBV infection and in long-term viral carriage. In common with other EBV-specific CD4+ T-cell responses the BORF1-specific CD4+ T-cells in IM patients expressed perforin and granzyme-B. Unexpectedly, perforin and granzyme-B expression was sustained over time even when the donor had entered the long-term infected state. These data further our understanding of EBV structural proteins as targets of T-cell responses and how CD4+ T-cell responses to EBV change from acute disease into convalescence. They also identify new targets for prophylactic EBV vaccine development.  相似文献   

16.
Retroviral vectors encoding HIV-1 proteins, in particular, the envelope from HIV-1 IIIB, have been constructed and used to generate infectious vector particles. Murine cells transduced with these vectors express HIV proteins. Vector-transduced cells, when injected into syngeneic BALB/c mice, induce potent CD8+, class I MHC-restricted cytotoxic T-lymphocyte responses and elicit the production of neutralizing antibody specific for HIV-1. The induction of similar responses in primates may provide the basis for considering the use of these vectors as immunostimulants in humans. The retroviral vectors or vector-transduced cells would probably be first employed as an immunotherapeutic for HIV-infected individuals.  相似文献   

17.
18.
Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells. Our data show that CML cells have a defective capacity to generate FANCD2 nuclear foci, either in dividing cells or after DNA damage. Similarly, human cord blood CD34(+) cells transduced with BCR/ABL retroviral vectors showed impaired FANCD2 foci formation, whereas FANCD2 monoubiquitination in these cells was unaffected. Soon after the transduction of CD34(+) cells with BCR/ABL retroviral vectors a high proportion of cells with supernumerary centrosomes was observed. Similarly, BCR/ABL induced a high proportion of chromosomal abnormalities, while mediated a cell survival advantage after exposure to DNA cross-linking agents. Significantly, both the impaired formation of FANCD2 nuclear foci, and also the predisposition of BCR/ABL cells to develop centrosomal and chromosomal aberrations were reverted by the ectopic expression of BRCA1. Taken together, our data show for the first time a disruption of the FA/BRCA pathway in BCR/ABL cells, suggesting that this defective pathway should play an important role in the genomic instability of CML by the co-occurrence of centrosomal amplification and DNA repair deficiencies.  相似文献   

19.
The ability to express exogenous cDNAs while suppressing endogenous genes via RNAi represents an extremely powerful research tool with the most efficient non-transient approach being accomplished through stable viral vector integration. Unfortunately, since traditional restriction enzyme based methods for constructing such vectors are sequence dependent, their construction is often difficult and not amenable to mass production. Here we describe a non-sequence dependent Gateway recombination cloning system for the rapid production of novel lentiviral (pLEG) and retroviral (pREG) vectors. Using this system to recombine 3 or 4 modular plasmid components it is possible to generate viral vectors expressing cDNAs with or without inhibitory RNAs (shRNAmirs). In addition, we demonstrate a method to rapidly produce and triage novel shRNAmirs for use with this system. Once strong candidate shRNAmirs have been identified they may be linked together in tandem to knockdown expression of multiple targets simultaneously or to improve the knockdown of a single target. Here we demonstrate that these recombinant vectors are able to express cDNA and effectively knockdown protein expression using both cell culture and animal model systems.  相似文献   

20.
Stable expression of cloned genes in mammalian cells has been achieved in the past by retroviral transduction using bicistronic retroviral vectors. In these vectors, the use of an Internal Ribosome Entry Site (IRES) allows simultaneous expression of a protein of interest and a fluorescence marker. However, traditional cDNA cloning in these vectors is often difficult. Here we report the construction of a high-throughput retroviral vector using the Invitrogen "Gateway" Cloning system. The Gateway recombination sequences (attR) flanking the ccdB and chloramphenicol resistance genes were incorporated at the 5' of the IRES of pMX-IRES-GFP, -CD2, or -CD4 vectors. Through recombination, these vectors can acquire cDNAs coding for genes of interest, which will result in simultaneous expression of the recombined gene and the marker protein. We constructed Gateway bicistronic vectors coding for the erythropoietin receptor (EpoR) and GFP, CD4, or CD2. Epo-dependent proliferation assays and analysis of Jak2-dependent EpoR cell-surface expression showed that these vectors were able to function indistinguishable from the original pMX-EpoR-IRES-GFP. The expression levels of the genes cloned upstream the IRES were proportional to the levels of expression of GFP, which was cloned downstream of the IRES. We used the same approach and generated Ba/F3 cells that overexpress STAT5a, STAT5b, or a constitutively active form of STAT5. Overexpression of STAT5 lead to a significant effect on the intrinsic adherence to plastic of these cells, but did not change their proliferative responses to cytokines. We discuss possible applications of the new vectors for cell signaling and expression cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号