首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Cytoplasmic male sterility (CMS) represents an important agricultural trait in pearl millet [Pennisetum glaucum (L.) R. Br.] with a value to the seed industry in facilitating economical hybrid seed production. Among the CMS systems available in millet, the A1 source is the most commonly used for hybrid production, but it can undergo low frequency reversion to fertility. Plant mitochondrial genomes are highly recombinogenic, becoming unstable and prone to ectopic recombination under conditions of tissue culture, somatic hybridization, or interspecific crossing. Similarly, CMS systems prone to spontaneous fertility reversion experience sporadic mitochondrial genome instability. We compared mitochondrial genome configurations between the male-sterile A1 line and fertile revertants of pearl millet to develop a model for millet mitochondrial genome reorganization upon reversion. Relative copy number of a subgenomic molecule containing the CoxI-1-2 junction region, a component of the recombination process for reversion, is amplified tenfold following reversion, relative to the CMS A1 line. We propose that increased copy number of this molecule in a small number of cells or at low frequency triggers a recombination cascade, likely during reproductive development. The proposed recombination process initiates with ectopic recombination through a 7-bp repeat to produce a novel CoxI-3-2 junction molecule and an unstable recombination intermediate. Subsequent intra-molecular recombination stabilizes the intermediate to form a new copy of CoxI accompanied by a deletion. This study furthers the argument that substoichiometric shifting within the plant mitochondrial genome plays an important role in the evolution of the mitochondrial genome and plant reproductive dynamics.  相似文献   

2.
The present study delineates the in vivo efficiency of two site‐specific recombination systems, VCre/VloxP and SCre/SloxP, in medaka (Oryzias latipes). VCre, SCre, and Cre RNA was microinjected into fertilized medaka eggs belonging to three transgenic lines harboring VloxP, SloxP, and loxP cassette. VCre induced site‐specific recombination specifically at VloxP sequence and SCre at SloxP sequence without any cross‐reactivity. These findings provide two novel alternative recombination systems in vivo in addition to the existing Cre/loxP and Flp/FRT systems, thus enabling sophisticated gene expression in model organisms.  相似文献   

3.
We have tested the CinH-RS2 and ParA-MRS site-specific deletion systems in tomato (Solanum lycopersicum L.). The ParA-MRS system is derived from the broad-host-range plasmid RK2, where the 222 aa ParA recombinase recognizes a 133 bp multimer resolution site (MRS). The CinH-RS2 system is derived from Acinetobacter plasmids pKLH2 and pKLH204, where the 188 amino acid CinH recombinase recognizes a 113-bp recombination site known as RS2. In this study, target lines containing a DNA segment flanked by recombination sites were crossed to recombinase-expressing lines producing CinH or ParA recombinase. CinH-mediated recombination of RS2 substrates was detected in 2 of 3 F1 plants that harbor both the target and recombinase loci. On the other hand, recombination mediated by ParA was not detected among F1 plants, but was found among 13 of 47 F2 plants. These data show that both systems can mediate site-specific DNA deletion in the tomato genome, and, upon further refinement, can provide additional molecular tools for tomato improvement through precise genome manipulation. As the target construct also contains additional recombination sites for site-specific integration by other recombination systems, these tomato lines could be used for future testing of gene stacking through site-specific integration.  相似文献   

4.
Microbial natural products among other functions they play a vital role in the disease prevention in humans, animals and plants. Pseudomonas parafulva CRS01-1 is a broad-spectrum antagonistic bacterium present in plants. However, no natural products have been isolated from this strain till date. Corresponding biosynthetic gene clusters to natural products is an effective method for bioprospecting, for which, genome manipulation tools are essential. We previously developed Pseudomonas-specific phage-derived homologous recombination systems for genetic engineering in four Pseudomonas species. Herein, we report the application of these recombineering systems in Pseudomonas parafulva CRS01-1, along with structural elucidation and bioactivity evaluation of natural products. The Pseudomonas recombineering toolbox established before in different four species is efficient for genome mining and bioactive metabolite discovery from more distant species.  相似文献   

5.
Summary Spontaneous and UV-induced mitotic recombination was compared in diploids homozygous for rad6-1 mutation and in the wild-type strain carrying heterozygous markers for detecting gene conversion (hom2-1, hom2-2) and crossing over (adel, ade2). Diploids homozygous for rad6-1 mutation were characterised by an elevated level of spontaneous and UV-induced mitotic recombination, particularly the intergenic events. Exposure of UV-irradiated strains to visible light resulted in an increased survival and decreased level of mitotic recombination. Liquid holding (LH) differentially affected frequency of mitotic intergenic and intragenic recombination in mutant and wild-type strains, being without any significant effect on cell survival. In a mutant strain intragenic recombination is significantly increased, intergenic only slightly. In the wild-type strain intragenic recombination is slightly decreased but intergenic is not changed by LH. Visible light applied after LH had no effect on survival and mitotic recombination in the wild type, while in the mutant strain photoreactivability of survival was fully preserved and accompanied by a decrease in the frequency of intragenic and intergenic recombination. The results suggest that metabolic pathways responsible for restoring cell survival are independent of or only partly overlapping with those concerning recombination events.  相似文献   

6.
Summary Adenine or pABA starvation induce mitotic recombination within the ad9 and paba1 cistrons respectively. Adenine concentrations in the plating medium as low as 1×10-8 M increase recombination frequency; the concentration optimal in respect to induced recombination frequency is 5×10-7 M.Recombination within the paba1 cistron is stimulated by low pABA concentrations, or caseine hydrolysate, or methionine.Aminopterin applied for one or two hours before conidia of pABA-requiring diploid are plated on proper selective media, induces recombination within the pro1, ad9 and paba1 cistrons. Conclusion is drawn that it is adenine or thymine starvation which induce mitotic recombination.The implications of this and other similar evidence are discussed.  相似文献   

7.
Summary Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.  相似文献   

8.
Summary The rad6-1 and rad6-3 mutants are highly UV sensitive and show an increase in spontaneous and UV induced mitotic heteroallelic recombination in diploids. Both rad6 mutants are proficient in spontaneous and UV induced unequal sister chromatid recombination in the reiterated ribosomal DNA sequence and are deficient in UV induced mutagenesis. In contrast to the above effects where both mutants appear similar, rad6-1 mutants are deficient in sporulation and meiotic recombination whereas rad6-3 mutants are proficient. The differential effects of these mutations indicate that the RAD6 gene is multifunctional. The possible role of the RAD6 gene in error prone excision repair of UV damage during the G1 phase of the cell cycle in addition to its role in postreplication repair is discussed.  相似文献   

9.
Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits to crop varieties of diverse ecosystems. Over two decades of research has identified several DNA recombinases that carryout efficient cis and trans recombination between the recombination sites artificially introduced into the plant chromosome. The specificity and efficiency of recombinases make them extremely attractive for genome engineering. In plant biotechnology, recombinases have mostly been used for removing selectable marker genes and have rarely been extended to more complex applications. The reversibility of recombination, a property of the tyrosine family of recombinases, does not lend itself to gene stacking approaches that involve rounds of transformation for integrating genes into the engineered sites. However, recent developments in the field of recombinases have overcome these challenges and paved the way for gene stacking. Some of the key advancements include the application of unidirectional recombination systems, modification of recombination sites and transgene site modifications to allow repeated site‐specific integrations into the selected site. Gene stacking is relevant to agriculturally important crops, many of which are difficult to transform; therefore, development of high‐efficiency gene stacking systems will be important for its application on agronomically important crops, and their elite varieties. Recombinases, by virtue of their specificity and efficiency in plant cells, emerge as powerful tools for a variety of applications including gene stacking.  相似文献   

10.
Genetic variation within and between species is based on recombination of DNA molecules. Recombination also plays a very important role in the repair of damaged DNA. Clarity about the mechanism by which recombination occurs is of profound interest not only to understand how this process assures the maintenance of genome integrity and at the same time is the driving force of evolution, but also for its application in biotechnology. The isolation of genes involved in recombination and the elucidation of the role of many of the corresponding gene products in Escherichia coli and Saccharomyces cerevisiae has formed the basis for comparative analysis in other, more complex eukaryotic systems. The identification of homologous genes from different organisms, including plants, suggests a conservation of the general mechanisms of recombination. Transgenes introduced in an organism may be incorporated in the genome by either homologous or nonhomologous recombination (end joining). The preferred pathway differs strongly between organisms. In plants there is a preference for random integration of the introduced DNA by nonhomologous recombination, which might lead to the accidental inactivation of important genes and to variable and unpredictable expression of the transgene itself. Therefore, there is an urgent need for the development and improvement of techniques for the directed integration of transgenes at specific locations in the genome. The integration of transgenes by homologous recombination would allow specific modification or disruption of endogenous genes, providing a tool for more detailed analysis of gene function. In combination with the recent introduction of site-specific recombination systems from E. coli or yeast into plants, this may lead to the development of versatile systems for modification of the plant genome.  相似文献   

11.
Site-specific recombination systems, such as Cre-lox from bacteriophage P1, have become very important tools for plant genome engineering. In many cases a constitutive promoter is used to express the recombinase gene. However, for certain research and commercial applications constitutive Cre-mediated recombination may not be desirable. We have evaluated the potential of seven different germline promoter:cre fusions to remove a stably integrated lox cassette through Cre-mediated recombination in Arabidopsis thaliana. We monitored the functionality of each promoter in the germline of primary transformants by analyzing the presence of the recombined lox cassette in T2 progeny. The selected germline promoters are involved in different developmental cues, including early stem cell identity (CLAVATA3), flower meristem identity (LEAFY, APETALA1), floral organ identity (AGAMOUS), and meiosis (SOLO DANCERS, DMC1, SWITCH1). For five out of these seven promoters we were able to show that efficient Cre-mediated recombination does, indeed, occur and that the recombination takes place at some point during germline development. Furthermore, a recombination efficiency of 100% is obtained when Cre-expression is regulated by the CLAVATA3 promoter. In addition, with these promoters, we observe much less variation in recombination frequency than previously reported for the 35S promoter. For these reasons, we believe that germline-specific Cre-lox recombination provides an additional tool to the site-specific recombination technology in plants.  相似文献   

12.
Summary Repair replication of DNA has been studied in first instar larvae and cultured cells of meiotic-9 (mei-9) mutants in Drosophila melanogaster. Results obtained with both experimental systems show that the mei-9 mutants are defective in this form of repair after UV and X-ray treatment. This defect is correlated with the observation that male larvae carrying alleles of this locus are hypersensitive to killing by UV and X-rays. These findings strengthen the suggestion derived from genetic data that the normal mei-9 + function is involved in the exchange process of meiotic recombination rather than in a precondition to exchange (Carpenter and Sandler, 1974).Abbreviations FdUrd 5-fluorodeoxyuridine - BrdUrd 5-bromodeoxyuridine - 3H-dThd thymidine methyl-3H - SSC 0.15 M sodium chloride-0.015 M sodium citrate - UV ultraviolet radiation-predominantly 254 nm  相似文献   

13.
The eukaryotic DNA mismatch repair (MMR) system contributes to maintaining the fidelity of genetic information by correcting replication errors and preventing illegitimate recombination events. This study aimed to examine the function(s) of the Arabidopsis thaliana PMS1 gene (AtPMS1), one of three homologs of the bacterial MutL gene in plants. Two independent mutant alleles (Atpms1-1 and Atpms1-2) were obtained and one of these (Atpms1-1) was studied in detail. The mutant exhibited a reduction in seed set and a bias against the transmission of the mutant allele. Somatic recombination, both homologous and homeologous, was examined using a set of reporter constructs. Homologous recombination remained unchanged in the mutant while homeologous recombination was between 1.7- and 4.8-fold higher than in the wild type. This increase in homeologous recombination frequency was not correlated with the degree of sequence divergence. In RNAi lines, a range of increases in homeologous recombination were observed with two lines showing a 3.3-fold and a 3.6-fold increase. These results indicate that the AtPMS1 gene contributes to an antirecombination activity aimed at restricting recombination between diverged sequences. Liangliang Li, Eric Dion contributed equally to this work.  相似文献   

14.
Effect of caffeine on the recombination process of Bacillus subtilis   总被引:6,自引:0,他引:6  
Summary The effect of caffeine on the recombination process was studied by using transformation and transfection of Bacillus subtilis as genetic systems. Data were obtained showing that caffeine reduces strongly both transformation and transfection. The inhibitory effect seems ascribable to an interference of caffeine with the process of recombination.  相似文献   

15.
    
Summary The kangaroo rat D. ordii is shown to contain an interspersed repeated sequence 3.25 kb in length. This sequence undergoes alteration (deletions) when cloned into a Red+ lambda vector but is stable in a Red- vector. Using the Red- clone it is shown that deletions are the result of the activity of the lambda Red, or E. coli RecE, recombination systems. Mixed infection experiments demonstrate that this activity is acting in trans. The deletions appear to yield fragments of specific size, suggesting that the recombination system is recognizing a specific sequence. The demonstration of small homologous fragments in the animal genomic DNA suggests that a similar system of recombination may exist in D. ordii.  相似文献   

16.
Summary A procedure for detection of mutants exhibiting either enhanced or reduced spontaneous mutation during mitosis and/or meiosis has been developed to probe the joint genic control of spontaneous mutation and recombination in yeast. A semidominant mutator,rem1-1, recovered by this technique, exhibits enhanced spontaneous mutation, intragenic recombination, and intergenic recombination during mitosis. Diploids homozygous forrem1-1 exhibit normal levels of meiotic intragenic and intergenic recombination and diminished ascospore viability.  相似文献   

17.
Summary In a preliminary report (Esposito 1978), evidence was presented which showed that heteroallelic recombination resulting in prototrophic colonies occurs at the 2-strand stage. A model utilizing replicative resolution of Holliday structures was proposed to explain how gene conversion at the 2-strand stage can result in exchange of outside markers. The object of the experiments reported herein was to present detailed genetic evidence for 2-strand recombination. In addition, we examined the features of mitotic recombination with respect to symmetry, length and polarity of heteroduplexes in wild type strains (REM1/REM1) and in strains bearing the hyper-recombination mutation rem1-1. To do this, we constructed strains so that prototrophs arising from heteroallelic recombination and recombinant for outside markers were detected by visual inspection. By analyzing these colonies genetically, we have inferred several features of mitotic recombination which distinguish it from its meiotic counterpart. Firstly, mototic heteroduplexes are often symmetric while meiotic heteroduplexes are almost exclusively asymmetric. Secondly, heteroduplexes tend to be longer in mitosis than in meiosis. Thirdly, unlike meiotic conversion, mitotic conversion does not show strong polarity. Recombination in strains homozygous for the rem1-1 mutation also takes place at the 2-strand stage. The rem1-1 mutation, however, appears to alter the features of mismatch correction.  相似文献   

18.
Recombination rate data are presented for three populations of grape based on framework genetic linkage maps developed with simple-sequence repeat markers. These linkage maps were constructed from different Vitis species and represent three genetic backgrounds. The first population is pure Vitis vinifera, derived from a cross of the European cultivars Riesling and Cabernet Sauvignon. The second is an interspecific cross between two commercially used rootstock cultivars of different North American Vitis species parentage, Ramsey (Vitis champinii) and Riparia Gloire (Vitis riparia). The third population, D8909-15 (Vitis rupestris × (Vitis arizonica/Vitis girdiana form)) × F8909-17 (V. rupestris × (V. arizonica/Vitis candicans form)), is an F1 from two half-sibs. Genome-wide and chromosome-wide recombination rates varied across the three populations and among the six Vitis parents. Global recombination rates in the parents of the third F1 population, with a complex Vitis background, were significantly reduced. In the first and third populations, the recombination rate was significantly greater in the male parent. Specific genome locations with frequent heterogeneity in recombination were identified, suggesting that recombination rates are not equal across the Vitis genome. The identification of regions with suppressed or high recombination will aid grape breeders and geneticists who rely on recombination events to introgress disease resistance genes from the genomes of wild Vitis species, develop fine-scale genetic maps, and clone disease resistance genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Summary The illegitimate recombination between Staphylococcus aureus plasmids pE194 (or pGG20, the hybrid between pE194 and Escherichia coli plasmid pBR322) and pBD17 (plasmid pUB110 without HpaII C-fragment) was studied in Bacillus subtilis. Cointegrates were generated with the frequency of 1–3x10-8. Among 22 hybrids analysed 9 types of recombinants were found. Nucleotide sequences of all three parental plasmids were involved in intermolecular recombination. Nucleotide sequencing of recombinant DNA junctions revealed that in 8 cases recombination occurred between short homologous regions (9–15 bp). One recombinant was formed using nonhomologous sites. The similarity was demonstrated between nucleotide sequences of the recombination sites of two types of cointegrates and those used for pE194 integration into the B. subtilis chromosome. Possible mechanisms of illegitimate recombination are discussed.  相似文献   

20.
Cell-free extracts of the yeast Saccharomyces cerevisiae can be used to catalyse the recombination of bacterial plasmids in vitro. Recombination between homologous plasmids containing different mutations in the gene encoding tetracycline resistance is detectable by the appearance of tetracycline-resistance following transformation of the recombinant plasmid DNA into Escherichia coli DH5. This in vitro recombination system was used to determine the involvement of eukaryotic topo-isomerases in genetic recombination. Cell-free extracts prepared from a temperature-sensitive topo-isomerase II mutant (top2-1) of S. cerevisiae yielded tetracycline-resistant recombinants, when the recombination assays were performed at both a non-restrictive temperature (30°C) and the restrictive temperature (37°C). This result was obtained whether or not ATP was present in the recombination buffer. Extracts from a non-conditional topo-isomerase I mutant (top1-1) of S. cerevisiae yielded tetracycline-resistant recombinants, as did a temperature-sensitive double mutant (top2-1/top1-8) at the restrictive temperature. The results of this study indicate that neither topo-isomerase I nor topo-isomerase II was involved in the recombinational activity examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号